Skip to main content

Sustainable Energy Development

  • Chapter
  • 125 Accesses

Abstract

In order to reach the goals indicated by the sustainable energy development the efficiency in the energy conversion use has to meet several criterions [1]. The potential for the efficiency improvement is generally underestimated. Most of the energy conversion systems consider the efficiency improvement as a separate process and their analysis reflects only the potential improvement of the process but not the potential for the efficiency improvement obtained by an exergy analysis of the energy system. Fossil fuel energy resources use is mostly conversion to heat by the combustion processes. Since the combustion process is taking place at temperatures between 900 — 1300°C and over 40% of heat is used a low temperature heat, it is indispensable to take into consideration the thermodynamic assessment of the efficiency in order to bring in line energy conversion processes and energy demand to obtain the optimum fuel utilization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Angel, E., Perrella, G., Bianco, R., Energy Efficiency Indicators of Italy, ENEA Centra Ricecche Casaccia, Roma, RT/ERG/96/3, 1996.

    Google Scholar 

  2. Angelini, A.M., Actual and Prospective Sources of Electrical Energy, Private Commmunication, 1996.

    Google Scholar 

  3. Angelini, A.M., A Note on the Role of System Engineering in the Industry of a Changing Society, Technology in Society, Vol. 15, No. 4, pp. 461–466, 1996.

    Article  Google Scholar 

  4. Sarkor, A.U., Roragos, S., Sustainable Development of Hydroelectric Energy, Energy, Vol. 20, No. 10, pp. 977–981, 1995.

    Article  Google Scholar 

  5. Cafier, G., Conte, G., Rome as a Sustainable City, Agency for a Sustainable Mediterranean Development, 1995.

    Google Scholar 

  6. Mitro, B., Lukas, N., Fells, I., European Energy, Energy Policy, Vol. 23, No. 8, pp. 689–701, 1995.

    Article  Google Scholar 

  7. Hein, K., Fossil Fuel Utilisation, Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal, July 1995.

    Google Scholar 

  8. El — Sayed, Y., Evans, R., Thermoeconomics and the Design of Heat System, Journal of Engineering for Power, pp. 27–35, January 1970.

    Google Scholar 

  9. Sama, D.A., Second Law Insight Analysis Computed with Pinch Analysis a Design Method, Symposium on Exergy Analysis of Energy System, Rome, 1994.

    Google Scholar 

  10. EU White Paper, COM (95), 682, An Energy Policy for The European Union, Published by EC, 1995.

    Google Scholar 

  11. Furfari, S., The Energy Dimension of EU: Action for a Cleaner Environment, Combustion Technologies for Environment, Lisbon, Portugal, July 1995.

    Google Scholar 

  12. Al Gobaisi, D.M.K, The Desalination Manifesto, IDA World Congress on “Desalination and Water Sciences”, Vol. 1, pp. 3–27, Nov. 1995.

    Google Scholar 

  13. Darwish, M.A., Desalination Processes: A Technical Comparison, IDA World Congress on “Desalination and Water Sciences”, Vol. 1, pp. 149–173, Nov. 1995.

    Google Scholar 

  14. Mitchelfelder, S., Best Available Technologies for Emission Control in Fossil Fuel Based Power Generation, Fourth International Conference on Combustion for a Clean Air Environment, Lisbon, Portugal, July 1997.

    Google Scholar 

  15. Klvana, D., Chuki, J., Guy, C., Kirchneva, J., Catalytic Combustion: New Catalysts for New Technologies, Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal, July 1995.

    Google Scholar 

  16. van Swaaj, W.P.M., Afgan, N.H., Heat and Mass Transfer in Fixed and Fluidized Bed, Hemisphere Publishing Corporation, Washington, 1985.

    Google Scholar 

  17. Durao, D.F.G., Heitor, M.V., Moreira A.L.N., On Stabilization of Flame on Multijet Industrial Burners, Experimental Thermal and Fluid Science, Vol. 5, pp. 736–746, 1992.

    Article  CAS  Google Scholar 

  18. Weinberg, F, Heat Recalculating Burners: Principles, and Some Recent Development, Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal, July 1995.

    Google Scholar 

  19. Carvalho, M.G., Oliviera, P, Semião, V., Three-dimensional Modelling of Glass Furnace, Journal of Institute of Energy, pp. 143–157, 1988.

    Google Scholar 

  20. Carvalho, M.G., Coelho, P.J., Heat Transfer in Gas Turbine Combustors, AIAA Journal of Thermophysics and Heat Transfer, Vol. 3, No. 2, pp. 123–211, 1989.

    Article  Google Scholar 

  21. Coelho, P.J., Carvalho, M.G., Evaluation of Three-dimensional Mathematical Model of Power Station Boiler, Journal Eng. Gas Turbine, 1986.

    Google Scholar 

  22. De Jong, B., Emission Characteristics of the Low-NOx Burners, Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal, July 1995.

    Google Scholar 

  23. Afgan, N., Fundamental Heat and Mass Transfer Research in the Development of the New Heat Exchangers Concept, Journal of Enhanced Heat Transfer, Vol. 2, No. 1-2, pp. 1–16, 1995.

    Google Scholar 

  24. Bergles, A., Techniques to Augment Heat Transfer, Heat Transfer Application, ed. by W. Rohsenow, J. Hartnett, E. Ganic, Elsevier Pub. Comp, 1985.

    Google Scholar 

  25. Leontiev, A.I., Calculation of the Effectiveness of Cooling Gas Turbine Blades (in Russian), Russian Academy of Sciences-Energetike, No. 6, pp. 85–92, 1993.

    Google Scholar 

  26. Goldstein, R.J., Film Cooling Advances in Heat Transfer, Vol. 7, pp. 321–379, Academic Press, 1971.

    Article  CAS  Google Scholar 

  27. Modern Boiler Design, Private Communication, 1998.

    Google Scholar 

  28. Afgan, N. H., Bloch, A. G., Radovanovic, P. M., Zhurovlev, Yu., Gorb, E.I., Boiler Expert System, ICHMT Forum on Expert System and Mathematical Modeling of Energy System, Erlangen, 1991.

    Google Scholar 

  29. Afgan, N., Carvalho, M., Coelho, G., P., Concept of Expert System for Boiler Fouling Assessment, Applied Thermal Engineering, Vol. 16, No. 10, pp. 836–844, 1966.

    Google Scholar 

  30. Afgan, N. H., He, X. G., Carvalho, M. G., Azevedo, J.L.T., Prototype of Knowledge-based System for Boiler Fouling Assessment at Power Plant Sines, Proceeding of 4th International Conference on Clean Air Technologies, Lisbon, Portugal, 1997.

    Google Scholar 

  31. Afgan, N. H., Carvalho, M. G., 1996, An Expert System for Controlling Process in a Power-Station Boiler Furnace, Thermal Engineering, Vol. 43, pp. 514–523.

    Google Scholar 

  32. Jamshidi, M., Large-Scale Systems: Modeling, Control, and Fuzzy Logic.

    Google Scholar 

  33. Leicester City Council et al., Development of Information System and Computer Models for Energy Management in Urban Environment, EC (XVII/4.1040/95 075G), 1994.

    Google Scholar 

  34. Fritz, W., Intelligent Systems and Their Societies, Intelligent System, Home Page, Internet.

    Google Scholar 

  35. Berkovski, B. Renewable Energy Sources, UNESCO Contribution to International Cooperation, pp. 845–847, Fueling 21th Century, Ed. A.E. Shendlin, P. Zaleski, Hemisphere Pu. Corp., 1989.

    Google Scholar 

  36. Afgan, N., Developing Countries Energy Strategy-Production and Technology Transfer, pp. 43–56, Fuelling 21th Century, Ed. A.E. Shendlin, P. Zaleski, Hemisphere Pu. Corp., 1989.

    Google Scholar 

  37. Afgan, N.H., Berkovski, B., Cumo, M., Naso, V., Distant Learning in Energy Engineering Education UNESCO Postgraduate Course, World Congress of Engineering Educators and Industry Leaders, UNESCO, July 1996.

    Google Scholar 

  38. Winter, C.J., Sizmann, R.L., Van-Hull, L.L., Solar Power Plants-Fundamentals, Technology, Systems, Economics, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  39. Zafran, M., Solar and Health, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  40. Best, G., Kwschik, Solar Energy and Agriculture, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  41. Gigopoulos, R, et.al., Solar Energy in Mediteranien, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  42. Morse, F.H., Photovoltaic Power Systems in Selected IEA Member Countries, Morse Associate, Washington D.C., March 1995.

    Google Scholar 

  43. The Intergovermental Panel on Climate Changes, Second Assessment Report, 1996

    Google Scholar 

  44. Fridleifsson I.B., Freston D., Geothermal Energy research and Development, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  45. Dickson, M., Fanelli, M., Geothermal Energy, UNESCO Energy Engineering Series, Edited by B. Berkovski, John Wiley & Sons, 1995.

    Google Scholar 

  46. Wereko-Brobby, Ch.Y., Hagen, E.B., Biomass Conversion and Technology, UNESCO Energy Engineering Series, Edited by B. Berkovski, John Wiley & Sons, 1995.

    Google Scholar 

  47. Hall, D.O., Biomass Energy, Energy Policy, pp. 711–737, Oct. 1991.

    Google Scholar 

  48. Hall, D.O., Rossilo-Calle F., deGroot P., Biomass Energy, Lessons from Case Studies in Developing Countries, Energy policy, pp. 62–73, Jan. 1992.

    Google Scholar 

  49. Walker, J.F., Jenkins, N., Wind Energy Technology, UNESCO Energy Engineering Series, Edited by B. Berkovski, John Wiley & Sons, 1995.

    Google Scholar 

  50. Sesto, E., Casale, C., Mari, G., Wind Energy — Present Situation and Future Prospects, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  51. Jiandong, T., Naibo, Z., Xianhuan, H., Huishen, D. Mini Hidropower, UNESCO Energy Engineering Series, Edited by B. Berkovski, John Wiley & Sons, 1995.

    Google Scholar 

  52. Cazenave, P. et al., Hydro Electric Power, World Solar Summit, UNESCO, July, 1993.

    Google Scholar 

  53. Marchuk, G.I., Kondrotyev, K.Ya., Priorities of Global Ecology, Moscow, Nauka, 1992.

    Google Scholar 

  54. Marchetti, C, Nuclear Energy and its Future, International Institute for Applied System Analysis, RP-93-18, 1993.

    Google Scholar 

  55. Nenat, J.C., Stavrov, A.I., Sokolski, E, Waight, P.J., Chernobyl Accident: The Consequences in Perspective, Int. Conference on Decade After Chernobyl, Vienna, April, 1996.

    Google Scholar 

  56. Three Mile Island Unit # 1, Information, Nuclear Regulatory Commission, Washington, 1995.

    Google Scholar 

  57. Cumo, M., Inherent and Passive Nuclear Reactor: Step towards a Second Nuclear Generation, Accademia Nazionale delle Scienze, Vol.113, Serie V, Part 2, 1995.

    Google Scholar 

  58. Cumo, M., Energy and Development, 50th Anniversary of the UN and the Italian Contribution toword the realization of the “Earth Chapter”, Rome, May 1995.

    Google Scholar 

  59. Rubbia, et al., Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier, European Organization for Nuclear Research-CERN/AT/95-44(ET) — Geneva, 29th September, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Afgan, N.H., da Graça Carvalho, M. (2000). Sustainable Energy Development. In: Sustainable Assessment Method for Energy Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4479-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4479-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7018-5

  • Online ISBN: 978-1-4615-4479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics