Skip to main content

Growth, characterization, and applications of self-assembled InGaAs quantum dots

  • Chapter
Quantum Semiconductor Devices and Technologies

Part of the book series: Electronic Materials Series ((EMAT,volume 6))

  • 195 Accesses

Abstract

This chapter focuses on the growth, characterization, and applications of self-assembled InxGa1-xAs quantum dots (QDs) on GaAs substrates. These QDs are formed by the so-called Stranski-Krastanow (SK) transition of the highly lattice-mismatched InxGa1-xAs film. The InxGa1-xAs/GaAs system is the prototypical system in III–V growth for self-assembly of QDs, and consequently it is the most heavily studied. The lattice constant of InAs is about 7.2% larger than that of GaAs; this is the largest mismatch among AlGalnAsP alloys to GaAs or InP substrates. From a practical standpoint, the large mismatch to a common substrate means that this material system is readily accessible to most laboratories with epitaxial growth capabilities such as molecular beam epitaxy (MBE) and organometallic vapor-phase epitaxy (OMVPE). Note that since the formation of these self-assembled QDs is driven by a reduction of the strain energy, many other III-V semiconductors can conceivably be used to form QDs on a variety of different substrates. Many of these have been demonstrated, such as GaSb/GaAs [1], InP/Ga0.5In0.5P [2], and InAs/InP [3], but we will not discuss them further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Hatami, N. Ledentsov, H. Grundmann, J. Böhrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich, U. Richter, S. Ivanov, B. Meltser, P. Kop’ev, and Z. Alferov, “Radiative recombination in type-II GaSb/GaAs quantum dots,” Appl. Phys. Lett 67(5), 656–658 (1995).

    Article  CAS  Google Scholar 

  2. N. Carlsson, W. Seifert, A. Petersson, P. Castrillo, M. Pistol, and L. Samuelson, “Study of the two-dimensional-three-dimensional growth mode transition in metalorganic vapor phase epitaxy of GalnP/InP quantum-sized structures,” Appl. Phys. Lett. 65(24), 3093–3095 (1994).

    Article  CAS  Google Scholar 

  3. S. Fafard, Z. Wasilewski, J. McCaffrey, S. Raymond, and S. Charbonneau, “InAs self-assembled quantum dots on InP by molecular beam epitaxy,” Appl. Phys. Lett. 68(7), 991–993 (1996).

    Article  CAS  Google Scholar 

  4. A. Marti Ceschin and J. Massies, “Strain-induced 2D–3D growth mode transition in molecular beam epitaxy of InxGa1-xAs on GaAs (001),” J. Crystal Growth 114, 693–699 (1991).

    Article  CAS  Google Scholar 

  5. J. Tersoff and F. LeGoues, “Competing relaxation mechanisms in strained layers,” Phys. Rev. Lett. 72(22), 3570–3573 (1994).

    Article  CAS  Google Scholar 

  6. D. E. Jesson, S. J. Pennycook, J.-M. Baribeau, and D. C. Houghton, “Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation,” Phys. Rev. Lett. 71(11), 1744–1747 (1993).

    Article  CAS  Google Scholar 

  7. S. Guha, A. Madhukar, and K. Rajkumar, “Onset of incoherency and defect introduction in the inital stages of molecular beam epitaxical growth of highly strained InxGa1-xAs on GaAs (100),” Appl. Phys. Lett. 57(20), 2110–2112 (1990).

    Article  CAS  Google Scholar 

  8. D. Leonard, K. Pond, and P. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50(16), 11687–11692 (1994).

    Article  CAS  Google Scholar 

  9. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).

    Article  CAS  Google Scholar 

  10. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22(9), 1915–1921 (1986).

    Article  CAS  Google Scholar 

  11. L. Goldstein, F. Glas, J. Marzin, M. Charasse, and G. LeRoux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer super-lattices,” Appl. Phys. Lett. 47(10), 1099–1101 (1985).

    Article  CAS  Google Scholar 

  12. W. Schaffer, M. Lind, S. Kowalczyk, and R. Grant, “Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction,” J. Vac. Sci. Technol. B 1(3), 688–695 (1983).

    Article  CAS  Google Scholar 

  13. F. Glas, C. Guille, P. Henoc, and F. Houzay, TEM Study of the Molecular Beam Epitaxy Island Growth of InAs on GaAs. Microscopy of Semiconducting Materials (Institute of Physics, Oxford, England, 1987).

    Google Scholar 

  14. C. Snyder, J. Mansfield, and B. Orr, “Kinetically controlled critical thickness for coherent islanding and thick highly strained pseudomorphic films of InxGa1-xAs on GaAs(100),” Phys. Rev. B 46(15), 9551–9554 (1992).

    Article  CAS  Google Scholar 

  15. M. Tabuchi, S. Noda, and A. Sasaki, “Mesoscopic structure in lattice-mismatched heteroeptiaxial interface layers,” in Science and Technology of Mesoscopic Structures, edited by S. Namba, C. Hamaguchi, and T. Ando (Tokyo, Springer-Verlag, 1992).

    Google Scholar 

  16. D. Leonard, M. Krishnamurthy, C. R. Reaves, S. P. DenBaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).

    Article  CAS  Google Scholar 

  17. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs does on GaAs,” Appl. Phys. Lett. 64(2), 196–198 (1994).

    Article  CAS  Google Scholar 

  18. J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, “Highly uniform InGaAs/GaAs quantum dots (∼15nm) by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1421–1423 (1994).

    Article  CAS  Google Scholar 

  19. E. Steimetz, F. Schienle, J. Zettler, and W. Richter, “Stranski-Krastanow formation of InAs quantum dots monitored during growth by reflectance anisotropy spectroscopy and spectroscopic ellipsometry,” J. Crystal Growth 170, 208–214 (1997).

    Article  CAS  Google Scholar 

  20. M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, and F. Scholz, “Observation of the 2D–3D growth mode transition in the InAs/GaAs system,” J. Crystal Growth 170, 558–562 (1997).

    Article  CAS  Google Scholar 

  21. F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, F. Bertram, J. Christen, A. Kosogov, and P. Werner, “Self organization phenomena of InGaAs/GaAs quantum dots grown by metalorganic chemical vapour deposition,” J. Crystal Growth 170, 568–573 (1997).

    Article  CAS  Google Scholar 

  22. Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, “Initial growth stage and optical properties of a three-dimensional InAs structure on GaAs,” J. Appl. Phys. 76(1), 347–351 (1994).

    Article  CAS  Google Scholar 

  23. H. Lee, R. Lowe-Webb, W. Yang, and P. Sercel, “Determination of the shape of self-organized InAs/GaAs quantum dots by reflection high energy electrom diffraction, ” Appl. Phys. Lett. 72(7), 812–814 (1998).

    Article  CAS  Google Scholar 

  24. M. Grundmann, N. Ledentsov, R. Heitz, L. Eckey, J. Christen, J. Böhrer, D. Bimberg, S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. Ustinov, A. Egorov, A. Zhukov, P. Kopev, and Zh. Alferov, “InAs/GaAs quantum dots radiative recombination from zero-dimensional states,” Phys. Stat. Sol. (B) 188, 249–258 (1995).

    Article  CAS  Google Scholar 

  25. R. Mirin, “Alternating molecular beam epitaxy and characterization of InGaAs quantum dots and quantum dot lasers,” Electrical and Computer Engineering. (University of California, Santa Barbara, 1997), p. 223.

    Google Scholar 

  26. K. Nishi, T. Anan, A. Gomyo, S. Kohmoto, and S. Sugou “Spontaneous lateral alignment of In0.25Ga90.75As self-assembled quantum dots on (311)B GaAs grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 70(26), 3579–3581 (1997).

    Article  CAS  Google Scholar 

  27. M. Kitamura, M. Nishioka, J. Oshinowo, and Y. Arakawa, “In-situ fabrication of self-aligned InGaAs quantum dots on GaAs multiatomic steps by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 66(26), 3663–3665 (1995).

    Article  CAS  Google Scholar 

  28. Q. Xie, P. Chen, A. Kalburge, T. Ramachandran, A. Nayfonov, A. Konkar, and A. Madhukar, “Realization of optically active strained InAs island quantum boxes on GaAs (100) via molecular beam epitaxy and the role of island induced strain fields,” J. Crystal Growth 150, 357–363 (1995).

    Article  CAS  Google Scholar 

  29. M. IIg, M. I. Alonso, A. Lehmann, K. H. Ploog, and M. Hohenstein, “Investigation of InAs submonolayer and monolayer structures on GaAs (100) and (311) substrates,” J. Appl. Phys. 74(12), 7188–7197 (1993).

    Article  CAS  Google Scholar 

  30. R. P. Mirin, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, “Overgrowth of InGaAs quantum dots formed by alternating molecular beam epitaxy,” J. Crystal Growth 175/176, 696–701 (1997).

    Article  CAS  Google Scholar 

  31. J. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. Feng, A. Lorke, J. Kotthaus, and P. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).

    Article  CAS  Google Scholar 

  32. J. Y. Yao, T. G. Andersson, and G. L. Dunlop, “The interfacial morphology of strained epitaxial In(x)Ga(1-x)As/GaAs,” J. Appl. Phys. 69(4), 2224–2230 (1991).

    Article  CAS  Google Scholar 

  33. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically self-organized InAs quantum box islands on GaAs (100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).

    Article  CAS  Google Scholar 

  34. O. Schmidt, N. Kirstaedter, N. Ledentsov, M. Mao, D. Bimberg, V. Ustinov, A. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).

    Article  CAS  Google Scholar 

  35. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically aligned and electronically coupled growth induced InAs islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).

    Article  CAS  Google Scholar 

  36. J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in grwoth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).

    Article  CAS  Google Scholar 

  37. G. Solomon, S. Komarov, J. Harris, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Crystal Growth 175/176, 707–712 (1997).

    Article  CAS  Google Scholar 

  38. R. Nötzel, J. Temmyo, H. Kamada, T. Furuta, and T. Tamamura, “Strong photoluminescence emission at room temperature of strained InGaAs quantum disks (200–30nm diameter) self-organized on GaAs (311)B substrates,” Appl. Phys. Lett. 65(4), 457–459 (1994).

    Article  Google Scholar 

  39. J. Temmyo, E. Kuramochi, M. Sugo, T. Nishiya, R. Nötzel, and T. Tamamura, “Strained InGaAs quantum disk laser with nanoscale active region fabricated with self-organisation on GaAs (311)B Substrate,” Electron. Lett. 31(3), 209–211 (1995).

    Article  CAS  Google Scholar 

  40. K. Nishi, R. Mirin, D. Leonard, G. Medeiros-Ribeiro, P. Petroff, and A. Gossard, “Structural and optical characterization of InAs/GaAs self-assembled quantum dots grown on (311)B GaAs,” J. Appl. Phys. 80(6), 3466–3470 (1996).

    Article  CAS  Google Scholar 

  41. P. Gonzalez-Borrero, E. Marega, Jr., D. Lubyshev, E. Petitprez, and P. Basmaji, “Molecular-beam epitaxy of self-assembled InAs quantum dots on non-(100) oriented GaAs,” J. Crystal Growth 175/176, 765–770 (1997).

    Article  CAS  Google Scholar 

  42. A.-L. Barabási, “Self-assembled island formation in heteroepitaxial growth,” Appl. Phys. Lett. 70(19), 2565–2567 (1997).

    Article  Google Scholar 

  43. H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, and W. Seifert, “Mean-field theory of quantum dot formation,” Phys. Rev. Lett. 79(5), 897–900 (1997).

    Article  CAS  Google Scholar 

  44. K. E. Khor and S. Das Sarma, “Surface morphology and quantum dot self-assembly in growth of strained-layer semiconducting films,” J. Vac. Sci. Technol. B 15(4), 1051–1055 (1997).

    Article  CAS  Google Scholar 

  45. M. Grundmann, N. Ledentsov, O. Stier, J. Böhrer, D. Bimberg, V. Ustinov, P. Kop’ev, and Zh. Alferov, “Nature of optical transitions in self-organized InAs/GaAs quantum dots,” Phys. Rev. B 53(16): R10509–R10511 (1996).

    Article  CAS  Google Scholar 

  46. R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 μm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).

    Article  CAS  Google Scholar 

  47. D. Lubyshev, P. González-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots,” Appl. Phys. Lett. 68(2), 205–207 (1996).

    Article  CAS  Google Scholar 

  48. H. Lee, W. Yang, and P. Sercel, “Temperature and excitation dependence of photoluminescence line shape in InAs/GaAs quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).

    Article  CAS  Google Scholar 

  49. S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, “Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 65(11), 1388–1390 (1994).

    Article  CAS  Google Scholar 

  50. H. Saito, K. Nishi, S. Sugou, and Y. Sugimoto, “Controlling polarization of quantum-dot surface-emitting lasers by using structurally anisotropic self-assembled quantum dots,” Appl. Phys. Lett. 71(5), 590–592 (1997).

    Article  CAS  Google Scholar 

  51. J.-Y Marzin, J.-M. Gerard, A. Izrael, and D. Barrier, “Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs,” Phys. Rev. Lett. 73(5), 716–719 (1994).

    Article  CAS  Google Scholar 

  52. S. Fafard, R. Leon, D. Leonard, J. Merz, and P. Petroff, “Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmall AlInAs/AlGaAs quantum dots,” Phys. Rev. B 50(11), 8086–8089 (1994).

    Article  CAS  Google Scholar 

  53. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).

    Article  CAS  Google Scholar 

  54. H. Benisty, C. M. Sotomayor-Torres, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19), 10945–10948 (1991).

    Article  Google Scholar 

  55. G. Wang, S. Fafard, D. Leonard, J. Bowers, J. Merz, and P. Petroff, “Time-resolved optical characterization of InGaAs/GaAs quantum dots,” Appl. Phys. Lett 64(21), 2815–2817 (1994).

    Article  CAS  Google Scholar 

  56. K. Kamath, N. Chervela, K. Linder, T. Sosnowski, H.-T. Jiang, T. Norris, J. Singh, and P. Bhattacharya, “Photoluminescence and time-resolved photoluminescence characteristics of InGaAs/GaAs self-organized single-and multiple-layer quantum dot laser structures,” Appl. Phys. Lett. 71(7), 927–929 (1997).

    Article  CAS  Google Scholar 

  57. R. Heitz, M. Veit, N. Ledentsov, A. Hoffmann, D. Bimberg, V. Ustinov, P. Kop’ev, and Zh. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56(16), 10435–10445 (1997).

    Article  CAS  Google Scholar 

  58. H. Drexler, D. Leonard, W. Hansen, J. Kotthaus, and P. Petroff, “Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots,” Phys. Rev. Lett. 73(16), 2252–2255 (1994).

    Article  CAS  Google Scholar 

  59. G. Medeiros-Ribeiro, D. Leonard, and P. Petroff, “Electron and hole energy levels in InAs self-assembled quantum dots,” Appl. Phys. Lett. 66(14), 1767–1769 (1995).

    Article  CAS  Google Scholar 

  60. P. Brunkov, S. Konnikov, V. Ustinov, A. Zhukov, A. Egorov, M. Maksimov, N. Ledentsov, and P. Kop’ev, “Capacitance spectroscopy of electron energy levels in InAs quantum dots in a GaAs matrix,” Semiconductors 30(5), 492–496 (1996).

    Google Scholar 

  61. H. Sakaki, G. Yusa, T. Someya, Y. Ohno, T. Noda, H. Akiyama, Y. Kadoya, and H. Noge, “Transport properties of two-dimensional electron gas in AlGaAs/GaAs selectively doped heterojunctions with embedded InAs quantum dots,” Appl. Phys. Lett. 67(23), 3444–3446 (1995).

    Google Scholar 

  62. G. Yusa and H. Sakaki, “GaAs/n-AlGaAs field-effect transistor with embedded InAs quantum traps and its programmable threshold characteristics,” Electron. Lett. 32(5), 491–493 (1996).

    Article  CAS  Google Scholar 

  63. N. Horiguchi, T. Futatsugi, Y. Nakata, and N. Yokoyama, “Electron transport properties through InAs self-assembled quantum dots in modulation doped structures,” Appl. Phys. Lett. 70(17), 2294–2296 (1997).

    Article  CAS  Google Scholar 

  64. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron, Lett 30(17), 1416–1417 (1994).

    Article  CAS  Google Scholar 

  65. D. Bimberg, N. Ledentsov, M. Grundmann, N. Kirstaedter, O. Schmidt, M. Mao, V. Ustinov, A. Egorov, A. Zhukov, P. Kopev, Zh. Alferov, S. Ruvimov, U. Gosele, and J. Heydenreich, “InAs-GaAs quantum pyramid lasers—in-situ growth, radiative lifetimes, and polarization properties,” Jpn, J. Appl. Phys. 35, 1311–1319 (1996).

    Article  CAS  Google Scholar 

  66. K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips, “Room temperature operation of In0.4Ga0.6As/GaAs self-organized quantum dot lasers,” Electron. Lett. 32(15), 1374–1375 (1996).

    Article  CAS  Google Scholar 

  67. R. Mirin, A. Gossard, and J. Bowers, “Room temperature lasing from InGaAs quantum dots,” Electron. Lett. 32(18), 1732–1733 (1996).

    Article  CAS  Google Scholar 

  68. H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 69(21), 3141–3142 (1996).

    Article  Google Scholar 

  69. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Room temperature CW operation at the ground state of self-formed quantum dot lasers with multi-stacked dot layer,” Elecrtron. Lett. 32(21), 2023–2024 (1996).

    Article  CAS  Google Scholar 

  70. D. Huffaker, L. Graham, and D. Deppe, “Low-threshold continuous-wave operation of an oxide-confined vertical cavity surface emitting laser based on a quantum dot active region and half-wave cavity,” Electron. Lett. 33(14), (1997).

    Google Scholar 

  71. L. A. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995).

    Google Scholar 

  72. H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida, and H. Ishikawa, “Lasing at three-dimensionally quantum confined sublevel of self-organized In0.5Ga0.5As quantum dots by current injection,” IEEE Photon. Technol. Lett. 7(12), 1385–1387 (1995).

    Article  Google Scholar 

  73. J. Lott, N. Ledentsov, V. Ustinov, A. Egorov, A. Zhukov, P. Kop’ev, Zh. Alferov, and D. Bimberg, “Vertical cavity lasers based on vertically coupled quantum dots,” Electron. Lett. 33(13), 1150–1151 (1997).

    Article  CAS  Google Scholar 

  74. D. Huffaker, H. Deng, and D. Deppe, “1.15μm Wavelength oxide-confined quantum dot vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 10(2), 185–187 (1998).

    Article  Google Scholar 

  75. V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, A. E. Zhukov, M. V. Maximov, A. F. Tsatsul’nikov, N. Yu. Gordeev, S. V. Zaitsev, Yu. M. Shernyakov, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, J. Böhrer, D. Bimberg, A. O. Kosogov, P. Werner, and U. Gösele, “Low-threshold injection lasers based on vertically-coupled quantum dots,” J. Crystal Growth 175/176, 689–695 (1997).

    Article  CAS  Google Scholar 

  76. A. Zhukov, V. Ustinov, A. Egorov, A. Kovsh, A. Tsatsulnikov, N. Ledentsov, S. Zaitsev, N. Gordeev, P. Kopev, and Zh. Alferov, “Negative characteristic temperature of InGaAs quantum dot injection laser,” Jpn. J. Appl. Phys. 36(6B), 4216–4218 (1997).

    Article  CAS  Google Scholar 

  77. D. Huffaker, O. Baklenov, L. Graham, B. Streetman, and D. Deppe, “Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture,” Appl. Phys. Lett. 70(18), 2356–2358 (1997).

    Article  CAS  Google Scholar 

  78. D. Huffaker and D. Deppe, “Improved performance of oxide-confined verticalcavity surface-emitting lasers using a tunnel injection active region,” Appl. Phys. Lett. 71(11), 1449–1451 (1997).

    Article  CAS  Google Scholar 

  79. N. Kirstaedter, D. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Zh. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1994).

    Article  Google Scholar 

  80. K. Kamath, J. Phillips, H. Jiang, J. Singh, and P. Bhattacharya, “Small-signal modulation and differential gain of single-mode, self-organized In0.4Ga0.6As/GaAs quantum dot lasers,” Appl. Phys. Lett. 70(22), 2952–2953 (1997).

    Article  CAS  Google Scholar 

  81. D. Klotzkin, K. Kamath, and P. Bhattacharya, “Quantum capture times at room temperature in high-speed In0.4Ga0.6As-GaAs self-organized quantum-dot lasers,” IEEE Photon. Technol. Lett. 9(10), 1301–1303 (1997).

    Article  Google Scholar 

  82. M. Mao, F. Heinrichsdorff, A. Krost, and D. Bimberg, “Study of high frequency response of self-organized stacked quantum dot lasers at room temperature,” Electron. Lett. 33(19): 1641–1642 (1997).

    Article  Google Scholar 

  83. K. Mukai, N. Ohtsuka, M. Sugawara, and S. Yamazaki, “Self-formed In0.5Ga0.5As quantum dots on GaAs substrates emitting at 1.3μm,” Jpn. J. Appl. Phys. 33(12A), L1710–L1712 (1994).

    Article  CAS  Google Scholar 

  84. J. Campbell, D. Huffaker, H. Deng, and D. Deppe, “Quantum dot resonant cavity photodiode with operation near 1.3μm wavelength,” Electron. Lett. 33(15), 1337–1338 (1997).

    Article  CAS  Google Scholar 

  85. S. Muto, “On a possibility of wavelength-domain-multiplication memory using quantum boxes,” Jpn. J. Appl. Phys. 34(2B), L210–L212 (1995).

    Article  CAS  Google Scholar 

  86. Y. Sugiyama, Y. Nakata, S. Muto, N. Horiguchi, T. Futatsugi, Y. Awano, and N. Yokoyama, “Observation of spectral hole burning in photocurrent spectrum of InAs self-assembled quantum dots embedded in pin diode,” Electron. Lett. 33(19), 1655–1657 (1997).

    Article  CAS  Google Scholar 

  87. D. Pan, Y. P. Zeng, M. Y Kong, J. Wu, Y Q. Zhu, C. H. Zhang, J. M. Li, and C. Y. Wang, “Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice,” Electron. Lett. 32(18), 1726–1727 (1996).

    Article  CAS  Google Scholar 

  88. D. Pan, E. Towe, and S. Kennerly, “Strong normal-incidence infrared absorption and photocurrent spectra from highly uniform (In,Ga)As/GaAs quantum dot structures,” Electron. Lett. 34(10), 1019–1020 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mirin, R.P., Gossard, A.C. (2000). Growth, characterization, and applications of self-assembled InGaAs quantum dots. In: Pearsall, T.P. (eds) Quantum Semiconductor Devices and Technologies. Electronic Materials Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4451-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4451-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7748-1

  • Online ISBN: 978-1-4615-4451-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics