Skip to main content

Part of the book series: Electronic Materials Series ((EMAT,volume 6))

  • 196 Accesses

Abstract

Over the years, the lateral dimensions in microelectronic circuits have been shrinking systematically by a factor of two every six years. The extrapolation of the past, formulated in Moore’s law, serves as the prescription for the future as laid down in the National Technology Roadmap for Semiconductors [1]. This Roadmap indicates gate widths for CMOS transistors of 35 nm in the year 2012. Continuation would predict minimum feature sizes of 1 nm around 2040. Many times in the past, a breakdown of Moore’s law has been predicted due to limitations in fabrication, excessive power density, or discontinuous change of physical behavior. So far, the impetus of the collective microelectronics industry has pushed aside such obstacles with remarkable ease. Nevertheless, it is hard to imagine silicon CMOS technology on the true nanometer scale. Will new quantum nan-odevices take over? Many introductions to papers on quantum devices suggest that this will be the case. In this chapter, we attempt to analyze the long-term potential for microelectronics applications of quantum devices. Obviously, this analysis can only depart from the types of devices and from the physics effects that we know of today. We will limit ourselves to electronic transport devices. We focus strongly on devices that are based on manipulation of single electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The National Technology Roadmap For Semiconductors, Semiconductor Industry Association (1997), http://www.notes.sematech.org/ntrs/PublNTRS.nsf.

  2. R. Landauer, IEEE Trans. Electron Devices 43, 1637 (1996).

    Article  Google Scholar 

  3. R. Landauer, Philos. Trans. R. Soc. London, Ser. A, 353, 367 (1995).

    Article  Google Scholar 

  4. Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum Press, New York, 1992).

    Google Scholar 

  5. Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön (Kluwer Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  6. Y. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

    Google Scholar 

  7. K. K. Likharev, IEEE Trans. Mag. 23, 1142 (1987).

    Article  Google Scholar 

  8. L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, Science 278, 1788 (1997).

    Article  CAS  Google Scholar 

  9. Sander J. Tans, Michel H. Devoret, Remco J. A. Groeneveld, and Cees Dekker, Nature 394, 761 (1998).

    Article  CAS  Google Scholar 

  10. P. Hadley, E. Delvigne, E. H. Visscher, S. Lähteenmäki, and J. E. Mooij, Phys. Rev. B 58, 15317 (1998).

    Article  CAS  Google Scholar 

  11. R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998).

    Article  CAS  Google Scholar 

  12. A. B. Zorin, E-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V. A. Krupenin, and S. V. Lotkhov, Phys. Rev. B 53, 13682 (1996).

    Article  CAS  Google Scholar 

  13. A. N. Korotkov, in Molecular Electronics, edited by J. Jortner and M. A. Ratner Blackwell, Oxford (1997), p. 157. K. K. Likharev, FED J. 6, 5 (1995).

    Google Scholar 

  14. D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).

    Google Scholar 

  15. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991), http://pavel.physics.sunysb.edu/RSFQ/RSFQ.html.

  16. M. G. Ancona, J. Appl. Phys. 79, 526 (1996). M. G. Ancona, Superlat. Microstruct. 20 (1996).

    Article  CAS  Google Scholar 

  17. J. R. Tucker, J. Appl. Phys. 72, 4399 (1992).

    Article  Google Scholar 

  18. Nobuyuki Yoshikawa, Yasuyuki Jinguu, Hiroshi Ishibashi, and Masanori Sugahara, Jpn. J. Appl. Phys. 35, 1140 (1996).

    Article  CAS  Google Scholar 

  19. R. H. Chen, A. N. Korotkov, and K. K. Likharev, Appl. Phys. Lett. 68, 1954 (1996).

    Article  CAS  Google Scholar 

  20. A. N. Korotkov, R. H. Chen, and L. K. Likharev, J. Appl. Phys. 78, 2520 (1995).

    Article  CAS  Google Scholar 

  21. Haroon Ahmed, J. Vac. Sci. Technology B 15, 2101 (1997).

    Article  CAS  Google Scholar 

  22. P. D. Tougauw and C. S. Lent, J. Appl. Phys. 75, 1818 (1994).

    Article  Google Scholar 

  23. A. N. Korotkov, Appl. Phys. Lett. 67, 2412 (1995).

    Article  CAS  Google Scholar 

  24. T. Ohshima and R. A. Kiehl, J. Appl. Phys. 80, 912 (1996).

    Article  CAS  Google Scholar 

  25. K. K. Likharev and A. N. Korotkov, Science 273, 763 (1996).

    Article  CAS  Google Scholar 

  26. M. J. Goossens, J. H. Ritskes, C. J. M. Verhoeven, and A. H. M. van Roermund, Proc. 1997 Eur. Conf. Circuit Theory and Design (ECCTD’97), 937–941 (1997).

    Google Scholar 

  27. S. Bandyopadhyay, V. P. Roychowdhury, and X. Wang, Phys. Low-Dim. Struct. 8/9, 29–82 (1995).

    Google Scholar 

  28. C. P. Heij, D. C. Dixon, P. Hadley, and J. E. Mooij, to appear in Appl. Phys. Lett.

    Google Scholar 

  29. D. P. Divincenzo, Science 270, 255 (1995), G. P. Berman, G. D. Doolen, R. Mainieri, and V. I. Tsifrinovich, Introduction to Quantum Computers (World Scientific, 1998).

    Article  CAS  Google Scholar 

  30. P. W. Shor, in Proc. Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 124 (1994).

    Google Scholar 

  31. Kazuo Yano, Tomoyuki Ishii, Takashi Hashimoto, Takashi Kobayashi, Fumio Murai, and Koichi Seki, IEEE Trans. Electron Devices 41, 1628 (1994).

    Article  Google Scholar 

  32. N. J. Stone and H. Ahmed, APL 73, 2134 (1998).

    CAS  Google Scholar 

  33. Lingjie Guo, Effendi Leobandung, and Stephen Y. Chou, Science 275, 649 (1997).

    Article  CAS  Google Scholar 

  34. K. K. Likharev and A. N. Korotkov, Proc. ISDRS (1995).

    Google Scholar 

  35. M. J. Yoo, T. A. Fulton, H. F. Hess, R. L. Willett, L. N. Dunkleberger, R. J. Chichester, L. N. Pfeiffer, and K. W. West, Science 276, 579 (1997).

    Article  CAS  Google Scholar 

  36. Mark W. Keller, John M. Martinis, and R. L. Kautz, Phys. Rev. Lett. 80, 4530 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hadley, P., Mooij, J.E. (2000). Quantum nanocircuits: chips of the future?. In: Pearsall, T.P. (eds) Quantum Semiconductor Devices and Technologies. Electronic Materials Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4451-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4451-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7748-1

  • Online ISBN: 978-1-4615-4451-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics