Skip to main content

Contraction-Dependent Hypertrophy of Neonatal Rat Ventricular Myocytes: Potential Role for Focal Adhesion Kinase

  • Chapter
The Hypertrophied Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

Summary

Focal adhesion kinase (FAK) and other protein tyrosine kinases (PTKs) found in focal adhesions regulate proliferation and cytoskeletal assembly of nonmuscle cells, but their role in hypertrophic growth of cardiac myocytes has not been investigated. Serum-free, primary cultures of spontaneously contracting and contractile-arrested neonatal rat ventricular myocytes (NRVMs) were used to determine the role of FAK and other PTKs in regulating cardiac gene expression and protein turnover associated with the hypertrophic phenotype. FAK was readily detected in focal adhesions and costameres of spontaneously contracting, hypertrophied myocytes, but was reduced in contractile-arrested cells. Chronic treatment of NRVMs with genistein (50µM), a relatively specific PTK inhibitor, prevented NRVM growth, as demonstrated by significant reductions (by 10–35%) in total protein, total protein/DNA ratio, and myofibrillar protein content. Genistein also significandy reduced myosin heavy chain (MHC) and actin synthesis, and increased MHC and actin degradation. Daidzein (50 µM), a weakly active analogue, had much less of an effect. Genistein also markedly reduced β-myosin heavy chain (β-MHC) and to a lesser extent atrial natriuretic factor (ANF) gene expression, thus reproducing many of the phenotypic features of cardiac myocyte atrophy produced by contractile arrest. Transient transfection of NRVMs with an expression vector containing the full-length coding sequence of chick FAK along with rat β-MHC and ANF promoter-luciferase constructs resulted in a 2–4-fold increase in luciferase activity, indicating that FAK stimulated transcription of fetal genes associated with the hypertrophic phenotype. Thus, FAK and/or other PTKs found in focal adhesions may play a role in both the transcriptional and posttranslational regulation of cardiac myocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK. 1991. Expression of collagen-binding integrins during cardiac development and hypertrophy. Circ Res 68:734–744.

    Article  PubMed  CAS  Google Scholar 

  2. Lu MH, DiLullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, Fischman DA, Holtzer H. 1992. The vinculin/sarcomeric-α-actinin/α-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022.

    Article  PubMed  CAS  Google Scholar 

  3. Hilenski KK, Xuehui MA, Vinson N, Terracio L, Borg TK. 1992. The role of β1 integrin in spreading and myofibrillogenesis in neonatal rat cardiac myocytes in vitro. Cell Motil Cytoskel 21:87–100.

    Article  CAS  Google Scholar 

  4. Simpson DG, Decker ML, Clark WA, Decker RS. 1993. Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol 123:323–336.

    Article  PubMed  CAS  Google Scholar 

  5. Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L. 1997. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol 273:H546–H556.

    PubMed  CAS  Google Scholar 

  6. Clark EA, Brugge JS. 1995. Integrins and signal transduction pathways: the road taken. Science 268:233–239.

    Article  PubMed  CAS  Google Scholar 

  7. Richardson A, Parsons JT. 1995. Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 17:229–236.

    Article  PubMed  CAS  Google Scholar 

  8. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. 1992. pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 89:5192–5196.

    Article  PubMed  CAS  Google Scholar 

  9. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. 1995. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376:737–745.

    Article  PubMed  CAS  Google Scholar 

  10. Burridge K, Turner CE, Romer LH. 1992. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119:893–903.

    Article  PubMed  CAS  Google Scholar 

  11. Guan JL, Trevithick JE, Hynes RO. 1991. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120 kDa protein. Cell Regul 2:951–964.

    PubMed  CAS  Google Scholar 

  12. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. 1994. Autophosphoryla-tion of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60Src:. Mol Cell Biol 14:1680–1688.

    PubMed  CAS  Google Scholar 

  13. Samarel AM, Engelmann GL. 1991. Contractile activity modulates myosin heavy chain-β expression in neonatal rat heart cells. Am J Physiol 261:H1067–H1077.

    PubMed  CAS  Google Scholar 

  14. Sharp WW, Terracio L, Borg TK, Samarel AM. 1993. Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ Res 73:172–183.

    Article  PubMed  CAS  Google Scholar 

  15. Samarel AM, Spragia ML, Maloney V, Kamal SA, Engelmann GL. 1992. Contractile arrest accelerates myosin heavy chain degradation in neonatal rat heart cells. Am J Physiol 263:C642–C652.

    PubMed  CAS  Google Scholar 

  16. Chomczynshi P, Sacchi N. 1987. Single step method of RNA isolation by acid guanidinium thio-cyanate phenol chloroform extraction. Anal Biochem 162:156–159.

    Google Scholar 

  17. Qi M, Ojamaa K, Eleftheriades EG, Klein I, Samarel AM. 1994. Regulation of rat ventricular myosin heavy chain expression by serum and contractile activity. Am J Physiol 267:C520–C528.

    PubMed  CAS  Google Scholar 

  18. Maki M, Takayanagi R, Misono KS, Pandey KN, Tibbetts C, Inagami T. 1984. Structure of rat atrial natriuretic factor precursor deduced from cDNA sequence. Nature 309:722–724.

    Article  PubMed  CAS  Google Scholar 

  19. Chan YL, Gutell R, Noller HF, Wool IG. 1984. The nucleotide sequence of a rat 18S ribosomal ribonucleic acid gene and a proposed secondary structure of 18S ribosomal ribonucleic acid. J Biol Chem 259:224–230.

    PubMed  CAS  Google Scholar 

  20. Knowlton KU, Braracchini E, Ross RS, Harris AN, Henderson SA, Evans SM, Glembotski CC, Chien KR. 1991. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during α-adrenergic stimulation of neonatal rat ventricular cells. J Biol Chem 226:7759–7768.

    Google Scholar 

  21. Ojamaa K, Klemperer JD, MacGilvray SS, Klein I, Samarel AM. 1996. Thyroid hormone and hemodynamic regulation of β-myosin heavy chain promoter in heart. Endocrinology 137:802–808.

    Article  PubMed  CAS  Google Scholar 

  22. Byron KL, Puglisi JL, Holda JR, Eble DM, Samarel AM. 1996. Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]i and contractile activity. Am J Physiol 271: C1447–C1456.

    CAS  Google Scholar 

  23. Qi M, Puglisi JL, Byron KL, Ojamaa K, Klein I, Bers DM, Samarel AM. 1997. Myosin heavy chain gene expression in neonatal rat heart cells: effects of [Ca2+]i and contractile activity. Am J Physiol 273:C394–C403.

    PubMed  CAS  Google Scholar 

  24. Eble DM, Cadre BM, Qi M, Bers DM, Samarel AM. 1998. Contractile activity modulates atrial natriuretic factor gene expression in neonatal rat ventricular myocytes. J Mol Cell Cardiol 30:55–60.

    Article  PubMed  CAS  Google Scholar 

  25. Bellis SL, Miller JT, Turner CE. 1995. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 270:17437–17441.

    Article  PubMed  CAS  Google Scholar 

  26. Schaller MD, Parsons JT. 1995. Pp125FAK—dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15:2635–2645.

    PubMed  CAS  Google Scholar 

  27. Burridge K, Chrzanowska-Wodnicka M. 1996. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–519.

    Article  PubMed  CAS  Google Scholar 

  28. Rhee D, Sanger JM, Sanger JW. 1994. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskel 28:1–24.

    Article  CAS  Google Scholar 

  29. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571.

    Article  PubMed  CAS  Google Scholar 

  30. Bogoyevitch MA, Sugden PH. 1996. The role of protein kinases in adaptational growth of the heart. Int J Biochem Cell Biol 28:1–12.

    Article  PubMed  CAS  Google Scholar 

  31. Sadishima J, Qiu Z, Morgan JP, Izumo S. 1996.Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15:5535–5546.

    Google Scholar 

  32. Sadoshima J, Izumo S. 1996. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775–787.

    PubMed  CAS  Google Scholar 

  33. Adams JW, Sah VP, Henderson SA, Brown JH. 1998. Tyrosine kinase and c-Jun NH2-terminal kinase mediate hypertrophic responses to prostaglandin F in cultured neonatal rat ventricular myocytes. Circ Res 83:167–178.

    Article  PubMed  CAS  Google Scholar 

  34. Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, Ginsberg MH, Loftus JC. 1998. ß1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82:1160–1172.

    Article  PubMed  CAS  Google Scholar 

  35. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G IV. 1997. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 272:4500–4508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eble, D.M., Qi, M., Strait, J., Samarel, A.M. (2000). Contraction-Dependent Hypertrophy of Neonatal Rat Ventricular Myocytes: Potential Role for Focal Adhesion Kinase. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics