Skip to main content

Discussion and Clinical Implications

  • Chapter
Double-Crush Syndrome

Abstract

Despite occasional contradictions in experimental data on the complex double crush-syndrome problem, I can safely conclude that this syndrome exists as a separate clinical entity. The exact neurophysiological and cellular mechanisms of this phenomenon, however, are not clearly established or universally accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Asbury AK, Thomas PK. Peripheral nerve disorders 2. Butterworth Heinemann. 1996.

    Google Scholar 

  • Chokroverty S. Diabetic amyotrophy. AAEE case report #13. 1987.

    Google Scholar 

  • Bentley FH, Schlapp W. The effects of pressure on conduction In peripheral nerve. J Physiol 1943; 102:72–82.

    PubMed  CAS  Google Scholar 

  • Dahlin LB, Danielsen N, MacLean WG, Rydevik B, Sjostrand J. Critical pressure level for impairment of fast axonal transport during experimental compression of rabbit vagus nerve (abstract). J Physiol 1982; 325:84P.

    Google Scholar 

  • Dahlin LB, McLean WG. Effect of graded experimental compression on slow and fast axonal transport in rabbit vagus nerve. J Neurophysiol Sci 1986; 72: 19–30.

    CAS  Google Scholar 

  • Dahlin LB, Meiri KF, McLean WG, Rydevik B, Sjostrand, J. Effects of nerve compression on fast axonal transport in streptozotocin-induced diabetes mellitus. An experimental study in the sciatic nerve of rats. Diabetologia 1986; 29: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Dahlin LB, Rydevik B. Pathophysiology of nerve compression. In: Operative nerve repair and reconstruction. V. 2. Gelberman RH ed. J.B. Lippincott Company. Philadelphia New York London Hagerstown. 1991. pp 847–866.

    Google Scholar 

  • Dahlin LB, Rydevik B, McLean WG, Sjostrand J. Changes in fast axonal transport during experimental nerve compression at low pressure. Experimental Neurology 1984; 84: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Dawson DM, Hallett M. Millender LH. Entrapment neuropathies. Second ed. 1990. Little, Brown and Company. Boston/Toronto.

    Google Scholar 

  • Dellon AL, Mackinnon SE. Chronic nerve compression model for the double crush hypothesis. Ann Plastic Surg 1991; 26: 259–262.

    Article  CAS  Google Scholar 

  • Denny-Brown D, Brenner C. Paralysis of nerve induced by direct pressure and by tourniquet. Arch Neurol Psychiat 1944; 51: 1–26.

    Google Scholar 

  • Distephano F, Nordstrom DL, Vierkant RA. Long-term symptom outcome of carpal tunnel syndrome and its treatment. J Hand Surg 1997; 22A: 200–210.

    Google Scholar 

  • Forman DS. Fast axonal transport: recent developments. Progr Brain Res 1987; 71: 103–112.

    Article  CAS  Google Scholar 

  • Forman DS, Padjen AL, Siggins GR. Axonal transport of organelles visualized by light microscopy: cinemicrographic and computer analysis. Brain Res 1977a; 136: 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Forman DS, Padjen AL, Siggins GR. Effect of temperature on the rapid retrograde transport of microscopically visible intra-axonal organelles. Brain Res 1977b; 136: 213–226.

    Google Scholar 

  • Fowler TJ, Danta G, Gilliatt RW. Recovery of nerve conduction after a pneumatic tourniquet: Observations on the hind-limb of the baboon. J Neirol Neurosurg Psychiat 1972; 35: 638–647.

    Article  CAS  Google Scholar 

  • Fullerton MP. Effect of ischaemia on nerve conduction in carpal tunnel syndrome. J Neurol Neurosurg Psychiat 1963; 26: 385–397.

    Article  PubMed  CAS  Google Scholar 

  • Gelberman RH, Hergenroeder PT, Hargens AR, Lundborg G, Akeson WH. The carpal tunnel syndrome. A study of carpal tunnel pressure. J Bone Joint Surg 1981; 63A: 380–383.

    Google Scholar 

  • Gelberman RH, Szabo RM, Williamson RV, Hargens AR, Yarn NC, Minteer-Conway MA. Tissue pressure threshold for peripherial nerve viability. Clin Orthop. 1983; 178: 285–291.

    PubMed  Google Scholar 

  • Gilliatt RW, Wilson TG. A pneumatic-tourniquet test in the carpal-tunnel syndrome. Lancet 1953; 2: 595–597.

    Article  Google Scholar 

  • Griffin JW, Hoffman PN, Clark AW, Carroll PT, Price DL. Slow axonal transport of neurofilament proteins: impairment by, β,β’-iminodipropionitrile administration. Science 1978; 202: 633–635.

    Article  PubMed  CAS  Google Scholar 

  • Guth L. “Trophic” influences of nerve on muscle. Physiol Rev 1968; 48: 645–687.

    PubMed  CAS  Google Scholar 

  • Hahnenberger RW. Effects of pressure on fast axoplasmic flow. An in vitro study in the vagus nerve of rabbits. Acta Physiol Scand 1978; 104: 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Hurst LC, Badalamente MA. Biochemical properties of peripheral nerve. Operative nerve repair and reconstruction. Gelberman RH, ed. J. B. Lippincott Co. Philadelphia, New York, London, Hagerstown. VI. 1991. pp 55–72.

    Google Scholar 

  • Hurst LC, Weissberg D, Carroll RE. The relationship of the double crush syndrome to carpal tunnel syndrome (an analysis of 1000 cases of carpal tunnel syndrome). J Hand Surg 1985; 10B: 202–204.

    Google Scholar 

  • Jacobsen J, Sidenius P. Decreased axonal transport of structural proteins in streptozotocin diabetic rats. J Clin Invest 1980; 66: 292–297.

    Article  Google Scholar 

  • Kovarsky J, Baum J, Goldstein MN. Carpal tunnel syndrome in temporal arteritis. J Rheumatol 1975; 2: 108–112.

    PubMed  CAS  Google Scholar 

  • Lubinska L. Axoplasmic streaming in regenerating and normal nerve fibers. Progr Brain Res 1964; 12: 1–66.

    Article  Google Scholar 

  • Lundborg G. Ischaemic nerve injury. Experimental studies on intraneural microvascular pathophysiology and nerve function in a limb subjected to temporary circulatory arrest. Scand J Plast Reconstr Surg 1970; Suppl 6.

    Google Scholar 

  • Lundborg G. Nerve injury and repair. Churchill Livingstone. Edinburg, London, Melbourne and New York. 1988.

    Google Scholar 

  • Lundborg G. Structure and function of the intraneural microvessels as related to trauma, edema formation and nervefunction. J Bone Joint Surg 1975; 57A. 938–948.

    Google Scholar 

  • Lundborg G, Dahlin LB. Structure and function of peripheral nerve. In: Operative nerve repair and reconstruction. V. 1. Gelberman RH, ed. J.B. Lippincott Co. Philadelphia, New York, London, Hagerstown. 1991. pp 3–18.

    Google Scholar 

  • Lundborg G, Myers RR, Powell HC. Nerve compression injury and increase in endoneurial fluid pressure. J Neurol Neurosurg Psychiat 1983; 46: 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Lundborg G, Rydevik B. Effect of stretching the tibial nerve of rabbit: A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg 1973; 55: 390–401.

    CAS  Google Scholar 

  • Mackinnon SE, Dellon AL, Hudson AR, Hunter DA. Chronic human nerve compression — a histological assessment. Neuropathol Applied Neurobiol 1986; 12: 547–565.

    Article  CAS  Google Scholar 

  • Matsumoto N. An experimental study on compression neuropathy measurement of blood flow with the hydrogen wash-out technique. J Japan Orthop Assoc 1983; 57: 805–816.

    CAS  Google Scholar 

  • McEwen BS, Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol 1968; 38: 494–508.

    Article  PubMed  CAS  Google Scholar 

  • McLellan DL, Swash M. Longitudinal sliding of median nerve during movements of the upper limb. J Neurol Neurosurg Psychiatry 1976; 39: 566–570.

    Article  PubMed  CAS  Google Scholar 

  • Mendell JR, Sahenk Z, Saida K, Weiss HS, Savage R, Couri D. Alterations of fast axoplasmic transport in experimental methyl n-butyl ketone neuropathy. Brain Res 1977; 133: 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Murray-Leslie F, Write V. Carpal tunnel syndrome, humeral epicondylitis and the cervical spine: A study of clinical and dimentional relations. Br Med J 1976; 5: 1439–1442.

    Article  Google Scholar 

  • Myers RR, Misisin AP, Powell HC, Lampert PW. Reduced nerve blood flow in hexachlorophene neuropathy: relationship to elevated endoneurial fluid pressure. J Neuropathol Exp Neurol 1982; 41: 391

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Powell HC. Galactose neuropathy: impact of chronic endoneural edema on nerve blood flow. Ann Neurol 1984; 16: 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto K, Matsumoto N, Tazaki K-I, Horiuchi Y, Uchinishi K-I, Mori Y. An experimental study on the “double crush” hypothesis. J Hand Surg 1987; 12A: 552–559.

    Google Scholar 

  • Ochoa J. Nerve fiber pathology in acute and chronic compression. In; Management of Peripheral Nerve Problems. 2nd Edition. Eds. Omer GE, Spinner M, Van Beek AL. WB Saunders. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo. 1998. pp 475–483.

    Google Scholar 

  • Ochoa J, Fowler Tj, Gilliatt RW. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J Anat 1972; 113:3; 433–455.

    PubMed  CAS  Google Scholar 

  • Ochs S. Systems of material transport in the nerve fibers axoplasmic transport related to nerve function and trophic control. Ann NY Acad Sci 1974a; 228: 202–223.

    Article  PubMed  CAS  Google Scholar 

  • Ochs S. Energy metabolism and supply of P to the fast axoplasmic transport mechanism in nerve. Fed Proc 1974b; 33: 1049–1058.

    CAS  Google Scholar 

  • Ochs S. Axoplasmatic transport. In: Tower D. (ed). The nervous system. The basic Neurosciences. Vol 1. 1975a. Raven Press. New York, p 137–146.

    Google Scholar 

  • Ochs S. Axoplasmic transport — a basis for neural pathology. In: Peripheral Neuropathy. Vol 1. Dyck PJ, Thomas PK, Lambert EH, eds. W.B. Saunders. Philadelphia, London, Toronto. 1975b. Chapter 12, pp 213–230.

    Google Scholar 

  • Ochs S. Basic properties of axoplasmic transport. In: Peripheral neuropathy. Dick PJ, Thomas PK, Lambert EH, Bunge R, eds. Saunders. Philadelphia. 1984; 1459–1478.

    Google Scholar 

  • Ochs S. The action of neurotoxins in relations to axoplasmic transport. Neurotoxicology 1987; 8: 155–165.

    PubMed  CAS  Google Scholar 

  • Ogata K, Naito M. Blood flow of peripheral nerve. Effects of dissection, stretching and compression. J Hand Surg 1986; 11B: 10–14.

    Google Scholar 

  • Olney RK. Neuropathies in connective tissue disease. AAEM Minimonograph #23. 1992.

    Google Scholar 

  • Osterman AL. The double crush syndrome. Orthop Clin N Am 1988; 19-147-155

    Google Scholar 

  • Osterman AL. Double crush and multiple compression neuropathy. Operative nerve repair and reconstruction. VII. Gelberman RH, ed. J. B. Lippincott Co. Philadelphia, New York, London, Hagerstown. 1991. pp 1211–1228.

    Google Scholar 

  • Pleasure D. Axoplasmic transport. In: Sumner AJ, ed. Physiology of peripheral nerve disease. WB Saunders Company. Philadelphia, London, Toronto. 1980. p 221–237.

    Google Scholar 

  • Powell HC, Myers RR. Schwann cell changes and demyelination in chronic galactose neuropathy. Muscle Nerve 1983; 6: 218–227.

    Article  PubMed  CAS  Google Scholar 

  • Powell HC, Myers RR. Pathology of experimental nerve compression. Laboratory Investigation 1986; 55: 91–100.

    PubMed  CAS  Google Scholar 

  • Rydevik B., Lundborg G, Bagge U. Effects of graded compression on intraneural blood flow. J Hand Surg 1981; 6: 3–12.

    CAS  Google Scholar 

  • Rydevik B, McLean WG, Sjostrand J, Lundborg G. Blockade of axonal transport induced by acute, graded compression of the rabbit vagus nerve. J Neurol Neurosurg Psychiat 1980: 43: 690–698.

    Article  PubMed  CAS  Google Scholar 

  • Rydevik B, Nordborg C. Changes in nerve function and nerve fibre structure induced by acute graded compression. J Neurol Neurosurg Psychiat 1980; 43: 1070–1082.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RE, Matschinsky FM, Godfrey DA, Williams Ad, McDougal DB, Jr. Fast and slow axoplasmic flow in sciatic nerve of diabetic rats. Diabetes 1975; 24: 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Steuer ER, Schroer TA. The mechanism and regulation of fast axonal transport. Trends Neurosci 1989; 12: 474–478.

    Article  PubMed  CAS  Google Scholar 

  • Sidenius P, Jakobsen J. Retrograde axonal transport. A possible role in the development of neuropathy. Diabetologia 1981; 20: 110–112.

    Article  PubMed  CAS  Google Scholar 

  • Sunderland S. The nerve lesion in the carpal tunnel syndrome. J Neurol Neurosurg Psychiatry 1976; 39: 615–1626.

    Article  PubMed  CAS  Google Scholar 

  • Sunderland S. Nerve and nerve injuries. 2nd ed. 1978. Churchill Livingston. Edinburgh London and New York.

    Google Scholar 

  • Sunderland S. Nerve injuries and their repair. A clinical appraisal. 1991. Churchill Livingston. Edinburgh London Melbourne and New York.

    Google Scholar 

  • Szabo RM, Gelberman RH. The pathophysiology of nerve entrapment syndromes. J Hand Surg 1987; 12A Suppl: 880–884.

    Google Scholar 

  • Upton ARM, McComas AJ. The double crush in nerve entrapment syndromes. Lancet 1973: 2: 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Weiss DG, Gross GW. The microstream hypothesis of axoplasmic transport: Characteristics, predictions and compatibility with data. In: Weiss DG (ed). Axoplasmic transport. Springer-Verlag. Berlin. 1982. p 362–383.

    Google Scholar 

  • Weiss P, Hiscoe HB. Experiments on the mechanism of nerve growth. J Exp Zool 1948; 107: 315–395.

    Article  PubMed  CAS  Google Scholar 

  • Werner C-O, Elmquist D, Ohlin P. Pressure and nerve lesions in The carpal tunnel. Acta Orthopaed Scand 1983; 54: 312–316.

    Article  CAS  Google Scholar 

  • Zahenk Z, Mendell JR. Analysis of fast axoplasmic transport in nerve ligation and adriamycin-induced neuronal pericaryon lesions. Brain Res 1979; 171: 41–53.

    Article  Google Scholar 

  • Zahenk Z, Mendell JR. Axoplasmic transport in zink pyridinethion neuropathy: evidence for an abnormality in distal turn-around. Brain Res 1980; 186: 343–353.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golovchinsky, V. (2000). Discussion and Clinical Implications. In: Double-Crush Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4419-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4419-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6989-9

  • Online ISBN: 978-1-4615-4419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics