Advertisement

Design and Implementation of the MorphoSys Reconfigurable Computing Processor

  • Ming-Hau Lee
  • Hartej Singh
  • Guangming Lu
  • Nader Bagherzadeh
  • Fadi J. Kurdahi
  • Eliseu M. C. Filho
  • Vladimir Castro Alves

Abstract

In this paper, we describe the implementation of MorphoSys, a reconfigurable processing system targeted at data-parallel and computation-intensive applications. The MorphoSys architecture consists of a reconfigurable component (an array of reconfigurable cells) combined with a RISC control processor and a high bandwidth memory interface. We briefly discuss the system-level model, array architecture, and control processor. Next, we present the detailed design implementation and the various aspects of physical layout of different sub-blocks of MorphoSys. The physical layout was constrained for 100 MHz operation, with low power consumption, and was implemented using 0.35 μm, four metal layer CMOS (3.3 Volts) technology. We provide simulation results for the MorphoSys architecture (based on VHDL model) for some typical data-parallel applications (video compression and automatic target recognition). The results indicate that the MorphoSys system can achieve significantly better performance for most of these applications in comparison with other systems and processors.

Keywords

Motion Estimation Clock Cycle Context Word Frame Buffer SRAM Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V.K. Prasanna, and H.A.E. Spaaneburg, “Seeking Solutions in Configurable Computing,” IEEE Computer, 1997, pp. 38–43.Google Scholar
  2. 2.
    S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A Tutorial,” IEEE Design and Test of Computers, vol. 13, no. 2, 1996, pp. 42–57.CrossRefGoogle Scholar
  3. 3.
    E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, “A First Generation DPGA Implementation,” FPD’ 95, Canadian Workshop of Field-Programmable Devices, May 1995.Google Scholar
  4. 4.
    J.R. Hauser and J. Wawrzynek, “Grap: A MIPS Processor with a Reconfigurable Co-processor,” Proc. of the IEEE Symposium on FPGAs for Custom Computing Machines, 1997.Google Scholar
  5. 5.
    D.C. Chen and J.M. Rabaey, “A Reconfigurable Multi-processor IC for Rapid Prototyping of Algorithmic-Specific Highspeed Datapaths,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, 1992.Google Scholar
  6. 6.
    E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources,” IEEE Symposium on FCCM, pp.157–166, 1996.Google Scholar
  7. 7.
    C. Ebeling, D. Cronquist, and P. Franklin, “Configure Computing: The Catalyst for High-performance Architectures,” Proceedings of IEEE International Conference on Application-specific Systems, Architectures and Processors, July 1997, pp. 364–372.Google Scholar
  8. 8.
    T. Miyamori and K. Olukotun, “A Quantitative Analysis of Re-configurable Coprocessors for Multimedia Applications,” Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines, April 1998.Google Scholar
  9. 9.
    J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni, and A. Agrawal, “The RAW Benchmark Suite: Computation Structures for General-Purpose Computing,” Proc. IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 97, 1997, pp. 134–143.Google Scholar
  10. 10.
    A. Abnous, C. Christensen, J. Gray, J. Lenell, A. Naylor, and N. Bagherzaheh, “Design and Implementation of Tiny RISC Microprocessor,” Microprocessors and Microsystems, vol. 16, no. 4, 1992, pp. 187–194.CrossRefGoogle Scholar
  11. 11.
    H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, T. Lang, R. Heaton, and Filho, “Morphosys: An Integrated Re-configurable Architecture,” NATO Symposium on Concepts and Integration, April 1998.Google Scholar
  12. 12.
    M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D. Lopresti, “Building and Using a Highly Parallel Programmable Logic Array,” IEEE Computer, 1991, pp. 81–89.Google Scholar
  13. 13.
    K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A. Shimizu, “A 3.8-ns CMOS 16 × 16-b Multiplier Using Complementary Pass-Transistor Logic,” IEEE Journal of Solid-State Circuits, vol. 25, no. 2, 1990, pp. 388–395.CrossRefGoogle Scholar
  14. 14.
    T.K. Callaway and E.E. Swartzlander, Jr., “The Power Consumption of CMOS Adders and Multipliers,” Low Power CMOS Design, A. Chandrakasan and R. Brodersen (Eds.), IEEE Press, 1998.Google Scholar
  15. 15.
    C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on Electronic Computer, vol. EC-13, 1964, pp. 14–17.CrossRefGoogle Scholar
  16. 16.
    L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Freq., vol. 34, 1965, pp. 349–356.Google Scholar
  17. 17.
    C.R. Baugh and B.A. Wooly, “A Two’s Complement Parallel Array Multiplication Algorithm,” IEEE Transactions on Computer, vol. C-22, no. 12, 1973, pp. 1045–1047.CrossRefGoogle Scholar
  18. 18.
    I. Koren, Computer Arithmetic Algorithms, Prentice Hall Inc., 1993.Google Scholar
  19. 19.
    J.M. Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall Inc., 1996.Google Scholar
  20. 20.
    SUIF Compiler system, The Stanford SUIF Compiler Group, http://suif.stanford.edu.
  21. 21.
    C. Hsieh and T. Lin, “VLSI Architecture For Block-Matching Motion Estimation Algorithm,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, 1992, pp. 169–175.CrossRefGoogle Scholar
  22. 22.
    K.-M. Yang, M.-T. Sun, and L. Wu, “A Family of VLSI Designs for Motion Compensation Block Matching Algorithm,” IEEE Transactions on Circuits and Systems, vol. 36, no. 10, 1989, pp. 1317–1325.CrossRefGoogle Scholar
  23. 23.
    Intel Application Notes for Pentium MMX, http://developer.intel.com/drg/mmx/appnotes/
  24. 24.
    W.-H. Chen, C.H. Smith, and S.C. Fralick, “A Fast Computational Algorithm for the Discrete Cosine Transform,” IEEE Transactions on Communication, vol. COM-25, no. 9, 1997.Google Scholar
  25. 25.
    T. Arai, I. Kuroda, K. Nadehara, and K. Suzuki, “V830R/AV: Embedded Multimedia Superscalar RISC Processor,” IEEE MICRO, 1998, pp. 36–47.Google Scholar
  26. 26.
    J. Villasenor, B. Schoner, K. Chia, C. Zapata, H.J. Kim, C. Jones, S. Lansing, and B. Mangione-Smith, “Configurable Computing Solutions for Automatic Target Recognition,” Proceedings of IEEE Workshop on FPGAs for Custom Computing Machine, April 1996.Google Scholar
  27. 27.
    M. Rencher and B.L. Hutchings, “Automated Target Recognition on SPLASH 2,” Proceedings of IEEE Symposium on FPGAs for Custom Computing Machine, April 1997.Google Scholar
  28. 28.
    XC 4000 Series High-Density Strategy, http://www.xilinx.xom.

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ming-Hau Lee
    • 1
  • Hartej Singh
    • 1
  • Guangming Lu
    • 1
  • Nader Bagherzadeh
    • 1
  • Fadi J. Kurdahi
    • 1
  • Eliseu M. C. Filho
    • 2
  • Vladimir Castro Alves
    • 2
  1. 1.Electrical and Computer Engineering DepartmentUniversity of California, IrvineIrvineUSA
  2. 2.Department of Systems and Computer EngineeringCOPPE/Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations