Skip to main content

Processing and System

  • Chapter
  • 296 Accesses

Abstract

Formation of functionally-graded materials (FGMs) by self-propagating high-temperature synthesis (SHS) has been amply demonstrated in many previous studies [1]. Layers of reactant powders are stacked in a compositionally-graded sequence and ignited at one end to initiate a self-sustaining combustion wave to fabricate the FGM. However, FGM formation by this method is subject to the same thermodynamic and kinetic limitations of the SHS process itself [2], and as such the synthesis of a relatively large number of material systems (monolithic, composites, and FGMs) is excluded. The use of an electric field to overcome these limitations, and hence to activate the synthesis process, has been demonstrated in previous investigations for many materials, including FGM systems [38].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sata N., Characteristics of SiC-TiB2 composites as the surface layer of SiC-TiB2-Cu functionally gradient material produced by self-propagating high-temperature synthesis, Functionally Gradient Materials, edited by Holt, J.B., Koizumi, M., Hirai, T. and Munir, Z. A., Ceramic Transactions, 24 (1993) 109–116, The American Ceramic Society, Westerville, OH.

    Google Scholar 

  2. Munir, Z. A., Field effects in self-propagating solid state reactions. Z. Physik. Chem., 207 (1997), 39–57.

    Article  Google Scholar 

  3. Feng, A., Munir, Z. A., Field-assisted self-propagating synthesis of beta SiC, J. Appl. Phys., 76 (1994), 1927–1928.

    Article  CAS  Google Scholar 

  4. Feng, A. and Munir, Z. A., The effect of an electric field on self-sustaining combustion synthesis, Part I: modeling studies, Metall. Trans., 26B (1995), 581–586.

    CAS  Google Scholar 

  5. Xue, H. and Munir, Z. A., Synthesis of AIN-SiC composites and solid solutions by field-activated self-propagating combustion, J. Euro. Ceram. Soc., 17 (1997), 1787–1792.

    Article  CAS  Google Scholar 

  6. Orru, R., Cao, G. and Munir, Z. A., Field activated combustion synthesis of titanium aluminides, 30A(1999), 1101–1108.

    CAS  Google Scholar 

  7. Gedevanishvili, S. and Munir, Z. A., The influence of an electric field on the mechanism of combustion synthesis of tungsten silicides. J. Mater. Res., 10 (1995), 2642–2647.

    Article  CAS  Google Scholar 

  8. Shon, I. J. and Munir, Z. A. Synthesis of TiC and TiC-Cu composites and TiC-Cu functionally graded materials by electrothermal combustion, J. Amer. Ceram. Soc., 81 (1998), 3243–3248.

    Article  CAS  Google Scholar 

  9. Munir, Z. A., Shon, I. J. and Yamazaki, K., Simultaneous synthesis and densification by field activated combustion. US Patent, No. 5, 794, 113; August 11, (1998).

    Google Scholar 

  10. Carrillo-Heian, E.M., Ph D Thesis, University of California, Davis, 2000.

    Google Scholar 

  11. Halverson, D. C., Lum, B. and Munir, Z. A., The combustion synthesis of boride composites, Proceedings of High-Temperature Materials Chemistry Symposium IV, edited by Munir Z. A., Cubicciotti D., and Tagawa H. Proceedings, The Electochemical Society, Pennington, NJ, 88-5 (1988), 613–622.

    Google Scholar 

  12. Tokita, M., Trends in advanced SPS systems and FGM technology. Proceedings of the NEDO International Symposium on Functionally Graded Materials; Tokyo, Japan, October 21–22, (1999).

    Google Scholar 

  13. Readey, D. W., Colorado School of Mines, private communications.

    Google Scholar 

  14. Yamada, O., Miyamoto, Y. and Koizumi, M., Self propagating high temperature synthesis of the SiC, J. Mater. Res., 1 (1986), 275–279.

    Article  CAS  Google Scholar 

  15. Graeve, O. A., Carrillo-Heian, E. N., Feng, A. and Munir, Z. A., Modeling of wave configuration during electrically-ignited combustion synthesis. J. Mater. Res., submitted, (2000).

    Google Scholar 

  16. Ho, P. S. and Kwok, T., Electromigration in metals, Rep. Prog. Phys., 52 (1989), 301–348.

    Article  CAS  Google Scholar 

  17. Bertolino, N., Garay, J. and Munir, Z. A to be published.

    Google Scholar 

  18. Shon, I. J., Munir, Z. A., Yamazaki, K. and Snoda, K., Simultaneous synthesis and densification of MoSi2 by field activated combustion. J. Amer. Ceram. Soc., 70(1996), 1875–1880.

    Article  Google Scholar 

  19. Ishiyama, M., Proc. 1993 Powder Metall. World Congress, Ed. by Y. Bando and K. Kosuge, Kyoto, Jpn. Soc. Powder & Powder Metall. Japan, (1993), 931–934.

    Google Scholar 

  20. Tokita, M., J. Soc. Powder Technology. Jpn., 30 (1993) 790–804.

    Article  CAS  Google Scholar 

  21. Omori, M., Mater. Sci. & Eng. A., to be published.

    Google Scholar 

  22. Omori, M. Okubo, A. Gilhan, K. and Hirai, T., J. Mater. Synthesis & Processing, 5-4 (1997) 279–282.

    Google Scholar 

  23. Schreoter, K., U. S. Patent, No. 1,549,615, (1925).

    Google Scholar 

  24. Suzuki, S., Fabrication of Hard Metal, Proc. 1st Sym. on Spark Plasma Sintering, Sendai, Japan, (1996), 1.

    Google Scholar 

  25. Omori, M., Kakita, T., Okubo, A. and Hirai, T., J. Jpn. Inst. Met., 62 (1998) 986–991.

    CAS  Google Scholar 

  26. Antis, G. R., Chantikul, P., Lawn, B. R. and Marshal, D. B., J. Am. Ceram. Soc., 64-9 (1981) 533–538.

    Article  Google Scholar 

  27. Kimura, H. and Kobayashi, S., J. Japan Soc. Powder & Powder Metall., 39-4 (1992) 287–290.

    Article  Google Scholar 

  28. Omori, M., Sakai, H., Okubo, A., Kawahara, M., Tokita, M. and Hirai, T., J. Jpn. Soc. Powder & Powder Metall., 41 (1994) 649–652.

    Article  CAS  Google Scholar 

  29. Omori, M., Sakai, H., Okubo, A., and Hirai, T., Proc. 3rd. Int. Symp. Structural & Functional Gradient Mater., edited by Ilschner, B. and Cherradi, N., Press Polytechniques Univ. Romandes, Switzerland, (1994), 667–671.

    Google Scholar 

  30. Omori, M., Okubo, A., Kan, G. H. and Hirai, T., Proc.4th. Int. Symp. Functionally Graded Materials, edited by Shiota, I. and Miyamoto, Y., Elsevier, Amsterdam, (1996), 767–772.

    Google Scholar 

  31. Tokita, M., 5th. Int. Symp. Functionally Graded Materials, edited by Kaysser, W. A., Trans Tech Pub., Germany, (1999), 83–88.

    Google Scholar 

  32. Omori, M., Kakita, T., Okubo, A. and Hirai, T., 5th. Int. Symp. Functionally Graded Materials, edited by Kaysser, W. A., Trans Tech Pub., Germany, (1998), 53–58.

    Google Scholar 

  33. Gurland, J. and Bardzil, P., J. Met., 7 (1955) 311–315.

    CAS  Google Scholar 

  34. Tokita, M.., Trends in Advanced SPS Spark Plasma Sintering Systems and Technology, Journal of the Society of Powder Technology Japan, 30-11 (1993), 790–804.

    Article  Google Scholar 

  35. Omori, M., Sakai, H., Hirai, T., Kawahara, M. and Tokita, M., Preparation and Properties of ZrO2(3Y)/Ni FGM., Proceedings of the 3rd International Symposium on Structural and Functionally Gradient Materials, Lausanne, Switzerland, (1994), 71–76.

    Google Scholar 

  36. Tokita, M., Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering, Proceedings of the 5th International Symposium on Functionally Graded Materials FGM 98, Dresden, Germany, (1999), 83–88.

    Google Scholar 

  37. Brindley, W. J., Miller, R. A. and Aikin, B. J., Improved Bond-Coat Layers for Thermal-Barrier Coatings, NASA Tech Briefs, August (1998), 63–65.

    Google Scholar 

  38. Aboudi, J., Pindera, M-J. and Arnold, S. M., Higher-Order Theory for Functionally Graded Materials, Composites: Part B (Engineering), 30-8 (1999), 777–832.

    Article  Google Scholar 

  39. Pindera, M-J., Aboudi, J. and Arnold, S. M., Thermomechanical Analysis of Functionally Graded Thermal Barrier Coatings with Different Microstructural Scales, J. American Ceramics Society, 81-6(1998), 1525–36.

    Google Scholar 

  40. Pindera, M-J., Aboudi, J. and Arnold, S. M., The Effect of Interface Roughness and Oxide Film Thickness on the Inelastic Response of Thermal Barrier Coatings to Thermal Cycling, Materials Science & Engineering A, (2000), (in press). See also NASA TM 1999-209770, (1999).

    Google Scholar 

  41. Aboudi, J., Micromechanical Analysis of Thermo-Inelastic Multiphase Short-Fiber Composites, Composites Engineering, 5–7 (1995), 839–850.

    Article  Google Scholar 

  42. Freborg, A.M., Ferguson, B. L., Brindley, W. J. and Petrus, G. J., Modeling Oxidation Induced Stresses in Thermal Barrier Coatings, Materials Science & Engineering, A245 (1998), 182–190.

    Article  CAS  Google Scholar 

  43. Suresh, S., Giannakopoulos A. E., Alcala J., Spherical indentation of compositionally graded materials: theory and experiments, Acta Mater., 45 (1997), 1307–21.

    Article  CAS  Google Scholar 

  44. Suresh, S. and Mortensen, A., Fundamentals of Functionally Graded Materials, IOC Communications Ltd., London, (1998).

    Google Scholar 

  45. Giannakopoulos, A.E. and Suresh, S., Indentation of solids with gradients in elastic properties: part II, axisymmetric indentors, Int. J. Solids Structure 33 (1997), 2393–28.

    Article  Google Scholar 

  46. Sampath, S., Herman, H., Shimoda, N. and Saito, T., Thermal Spray Processing of FGMs, MRS Bulletin, January (1995), 27–31.

    Google Scholar 

  47. Sampath, S., Smith, W. C., Jewett, T. J., and Kim, H., Synthesis and characterization of grading profiles in plasma sprayed NiCrAlY-zirconia FGMs, Mat. Sci. Forum, 308–11 (1999), 383–88.

    Article  Google Scholar 

  48. Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. of ASME—J. of Basic Engineering, (1960), 35–45.

    Google Scholar 

  49. Aoki, S., Amaya, K., Sahashi, M. and Nakamura, T., Identification of Gurson’s material constants by using Kaiman filter, Computational Mechanics, 19 (1997), 501–06.

    Article  Google Scholar 

  50. Gudmundsson, B. and Jacobson, B. E., Microstructure and Erosion Resistance of Vacuum Plasma Sprayed CoNiCrAlY/Al2O3 Composite Coating, Mat. Sci. Eng., vol. A108 (1989), 87–95.

    CAS  Google Scholar 

  51. Sampath, S. and Herman, H., Plasma Spray Forming Metals, Intermetallics and Ceramics, J. Met., 45-7 (1993), 42–49.

    Google Scholar 

  52. Sasaki, S. and Shimura, H., et al., Proc. of ISTC 95, Kobe, Japan. (1995), 267–271.

    Google Scholar 

  53. Sampath, S. and Herman, H., Rapid Solidification and Microstructure Development During Plasma Spray Deposition, Jour. of Thermal Spray Technology, 5-4, Dec. (1996), 445–456.

    Google Scholar 

  54. Alam, S. and Sasaki, S., et al., Intl., Conf., on Surface Modification technologies, Singapore, Sept. 2–4, (1996), 918–924.

    Google Scholar 

  55. Sasaki, S. and Shimura, H., et al., Proc. 6th Intl., Trib. Cong. Aug 30, Budapest, Hungry.

    Google Scholar 

  56. Mangonon, Jr, P. L. and Thomas, G., Metal Trans., 1 (1970), 1587–94.

    Article  CAS  Google Scholar 

  57. Ding, J., Huang, H., McCormick, P.G. and Street, R., J Mag. Mater., 139 (1995), 109–114.

    CAS  Google Scholar 

  58. Watanabe, Y., Nakamura, Y., Fukui, Y. and Nakanishi, K., J Mater. Sci. Letters, 12 (1993); 326–28.

    Article  CAS  Google Scholar 

  59. Watanabe, Y., Nakamura, Y. and Fukui, Y., Proc. of FGM’ 96, (1997), 713–718.

    Google Scholar 

  60. Watanabe, Y., Kang, S. H., Chan, J. W. and Morris, Jr, J.W., Mater. Trans. JIM, 96140 (1999), 66.

    Google Scholar 

  61. Bourke, M., Maldonado, J. G., Masters, D., Meggers, K. and Priesmeyer, H. G., Mater. Sci. Eng., A221(1996), 1–10.

    CAS  Google Scholar 

  62. Sakai, H., Morishita, D. and Watanabe, Y., Mater. Sci. Forum, 308–311 (1999), 579–84.

    Article  Google Scholar 

  63. Tanaka, F. and Watanabe, Y., Proc. of Inter. Conf. on Adv. Fiber Mater., (1999), 391–392.

    Google Scholar 

  64. Watanabe, Y. and Fukui, Y., Proc. of The Fourth Inter. Conf. on ECOMATERIALS. (1999), 495–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ichikawa, K. (2001). Processing and System. In: Ichikawa, K. (eds) Functionally Graded Materials in the 21st Century. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4373-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4373-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7236-3

  • Online ISBN: 978-1-4615-4373-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics