Advertisement

Reactive Geochemical and Biochemical Transport

  • Gourt-Tsyh Yeh

Abstract

This chapter covers the basis of biogeochemical modeling and its coupling with fluid flow and hydrologic transport. The basis of biogeochemical modeling is the principle of mole balance, the law of mass action, and rate laws. The basis of reactive biogeochemical transport is the conservation principle and flux laws. We begin the chapter by introducing a simple example of geochemical equilibrium (Section 2.1). Then we derive equations governing generalized geochemical equilibrium (Section 2.2), basic and parallel geochemical kinetics (Section 2.3), and mixed chemical equilibrium and kinetics (Section 2.4) from a reaction point of view. Following the derivation of geochemical processes, we deal with reactive chemical transport (Section 2.5), and transport and fate of chemicals and microbes (Section 2.6). Finally, a variety of strategies to model multicomponent-multispecies reactive transport is presented (Section 2.7).

Keywords

Adsorbed Species Stoichiometric Coefficient Component Species Operational Electron Adsorbent Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baptista, A. E. 1984. Solution of advection-dominated transport by EulerianLagrangian methods using the backwards method of characteristics. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  2. Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier (also Dover, 1988).Google Scholar
  3. Benefield, L. D. and F. J. Molz. 1984. A model for the activated sludge process which considers waste water characteristics, flux behavior, and microbial population. Biotechnol. Bioeng. 26, 352–361.CrossRefGoogle Scholar
  4. Bjerrum, N. 1926. Ionic association: I. Influence of ionic association on the activity of ions at moderate degrees of association. Kgl. Danske Videnskab. Selskb. Math-fys. Medd. 7:1-48.Google Scholar
  5. Brock, T. D. and M. T. Madigan. 1991. Biology of Microorganisms (6th Ed.) Cliffton, N. J.: Prentice-Hall.Google Scholar
  6. Bryant, S. L., R. S. Schechter, and L. W. Lake. 1986. Interactions of precipitation-dissolution waves and ion exchange in flow through permeable media. AIChE J. 32(5):751–764.CrossRefGoogle Scholar
  7. Cederberg, G. A. 1985a. TRANQL: A Ground-water Mass-Transport and Equilibrium Chemistry Model for Multicomponent System. Ph.D. Thesis. Dept. of Civil Engineering, Stanford University, California.Google Scholar
  8. Cederberg, G. A. 1985b. A groundwater mass transport and equilibrium chemistry model for multicomponent system. Water Resour. Res. 21(8):1095–1104.CrossRefGoogle Scholar
  9. Chapman, D. L. 1913. A contribution to the theory of electrocapillarity. Philos. Mag. 6(25):475–481.Google Scholar
  10. Cheng, H. P. 1995.Development and Application of a Three-Dimensional Finite Element Model of Subsurface Flow, Heat Transfer, and Reactive Chemical Transport. Ph.D. Thesis, Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA.Google Scholar
  11. Cheng, H. P. and G. T. Yeh. 1998. Development of a three-dimensional model of subsurface flow, heat transfer, and reactive chemical transport: 3DHYDROGEOCHEM. J. Contaminant Hydrol. 34:47–83.CrossRefGoogle Scholar
  12. Chilakapati, A. 1995. RAFT. A Simulator for ReActive Flow and Transport of Groundwater Contaminants. PNL-10636, Pacific Northwest National Laboratory, Richland, WA.CrossRefGoogle Scholar
  13. Chilakapati, A., T. Ginn, and J. E. Szecsody. 1998. An analysis of complex reaction networks in groundwater modeling. Water Resour. Res. 34:1767–1780.CrossRefGoogle Scholar
  14. Davies, C. W. 1962. Ion Association. Butterworths, Washington, DC, 190 pp.Google Scholar
  15. Davis, J. A., and J. O. Leckie. 1978. Surface ionization and complexation at oxide water interface: Part 2. J. Colloid Interface Sci. 67:90–107.CrossRefGoogle Scholar
  16. Freeze, R. A. 1972a. Role of subsurface flow in generating surface runoff: 1. Baseflow contributions to channel flow. Water Resour. Res. 8:609–623.CrossRefGoogle Scholar
  17. Freeze, R. A. 1972b. Role of subsurface flow in generating surface runoff: 2. Upstream source areas. Water Resour. Res. 8:1272–1283.CrossRefGoogle Scholar
  18. Fuoss, R. M. 1935. Properties of electrolyte solutions. Chem. Rev. 17:27–42.CrossRefGoogle Scholar
  19. Grant, W.D. and P. E. Long. 1981. Environmental Microbiology. Halsted Press.Google Scholar
  20. Grove, D. B. and W. W. Wood. 1979. Prediction and field verification of subsurface-water quality changes during artificial recharge, Lubbock, Texas. Groundwater 17(3):250–257.CrossRefGoogle Scholar
  21. Gouy, G. 1910. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. 9:457–468.Google Scholar
  22. Helgeson, H. C. 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations. Geochim. Cosmochim. Acta 32:853–877.CrossRefGoogle Scholar
  23. Helgeson, H. C. 1979. Mass transfer among minerals and hydrothermal solutions. In H. L. Barnes ed. Geochemistry of Hydrothermal Ore Deposit pp. 568–610. John Wiley & Sons, Inc., New York.Google Scholar
  24. Helgeson, H. C. and W. M. Murphy. 1983. Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. 1. Computational approach. Math. Geol. 15:109–130.CrossRefGoogle Scholar
  25. Herbert, D. 1958. Some principles of continuous culture. In G. Tunevall ed., Proc Recent Progress in Microbiology. Blackwell Scientific, Boston, Mass.Google Scholar
  26. Hindmarsh, A. C. 1980. LSODE and LSODI, Two new initial value differential equation solvers. ACM SIGNUM Newsletter 15(4).Google Scholar
  27. Jennings, A. A., D. J. Kirkner, and T. L. Theis. 1982. Multicomponent equilibrium chemistry in groundwater quality models.Water Resour. Res.18:(4):1089–1096.CrossRefGoogle Scholar
  28. Kincaid, C. T., J. R. Morrey, and J. E. Rogers. 1984.Geohydrochemical Models for Solute Migration. Volume I Process Development and Computer Code Selection. EA-3417, Final Report. Battelle, Pacific Northwest Laboratory, Richland, WA.Google Scholar
  29. Kirkner, D. J., T. L. Theis, and A. A. Jennings. 1984. Multicomponent solute transport with sorption and soluble complexation.Advances in Water Resources.7:120–125.CrossRefGoogle Scholar
  30. Kirkner, D. J., A. A. Jennings, and T. L. Theis. 1985. Multicomponent mass transport with chemical interaction kinetics.J. Hydrol.76:107–117.CrossRefGoogle Scholar
  31. Kirkner, D. J., A. A. Jennings, and T. L. Theis. 1987.Multi-Solute Subsurface Transport Modeling for Energy Solid Wastes. Final Report C00–10253–5. Department of Civil Engineering, University of Notre Dame, Indiana.Google Scholar
  32. Lewis, F. M., C. I. Voss, and J. Rubin. 1987. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications.J. Hydrol.90:81–115.CrossRefGoogle Scholar
  33. Lichtner, P. C. 1985. Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems.Geochim. Cosmochim. Acta.49:779–800CrossRefGoogle Scholar
  34. Lichtner, P. C. 1996. Continuum formulation of multicomponent-multiphase reactive transport. In P. Lichtner, et al., eds.Reviews in Mineralogy. Vol. 34 Reactive Transport in Porous Media, pp. 1–83. Mineralogical Society of America, Washington, DC, 1996.Google Scholar
  35. Miller, C. W. 1983. CHEMTRN User’s Manual LBL-16152.Lawrence Berkeley Laboratory, University of California, Berkeley, CA.Google Scholar
  36. Molz, F. J., M. A. Widdowson, and L. D. Benefield. 1986. Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media.Water Resour. Res.Vol. 22(8):1207–1216.CrossRefGoogle Scholar
  37. Morel, F. and J. Morgan. 1972. A numerical method for computing equilibria in aqueous chemical systems.Environ. Sci. Technol.6(1):58–67.CrossRefGoogle Scholar
  38. Narasimhan, T. N., A. F. White, and T. Tokunaga. 1986. Groundwater contamination from an inactive uranium mill tailings pile 2. Application of a dynamic mixing model.Water Resour. Res.22(13):1820–1834.CrossRefGoogle Scholar
  39. Nordstrom, D. K., L. N. Plummer, T. M. L. Wigley, T. J. Wolery, J. W. Ball, E. A. Jenne, R. L. Bassett, D. A. Crerar, T. M. Florence, B. Fritz, M. Hoffman, G. R. Holdren, Jr., G. M. Lafon, S. V. Mattigod, R. E. McDuff, F. Morel, M. M. Reddy, G. Sposito, and J. Thrailkill. 1979. A comparison of computerized chemical models for equilibrium calculations in aqueous systems.Proc. Chemical Modeling in Aqueous Systemspp. 857–894. 176th Meeting of the American Chemical Society, Miami Beach, FL, September 11 through 13, 1978, ACS Symposium Series 93. American Chemical Society, Washington DC.Google Scholar
  40. Ogg, R. A., Jr. 1947. J.Chemical Physics.15:337, 613.Google Scholar
  41. Owczarek, J. A. 1964.Fundamentals of Gas Dynamics.International Textbook Company, Scranton PA, 648 pp.Google Scholar
  42. Pauling, L. 1959.General Chemistry(2nd Ed.) W. H. Freeman and Company, San Francisco, CA, 710 pp.Google Scholar
  43. Petzold, L. R. 1981.Differential/Algebraic Equations Are Not ODE’s. Report SAND81–8668. Sandia National Laboratory, Albuquerque, NM.Google Scholar
  44. Reed, M. H. 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase.Geochim. Cosmochim. Acta46:513–528.CrossRefGoogle Scholar
  45. Reilly, P. J., R. H. Wood, and R. A. Robinson. 1971. Prediction of osmotic and activity coefficients in mixed-electrolyte solutions.J. Phys. Chem.75:1305–1315.CrossRefGoogle Scholar
  46. Rubin, J. and R. V. James. 1973. Dispersion-affected transport of reacting solutes in porous media: Galerkin method applied to equilibrium-controlled exchange in unidirectional steady water flow.Water Resour. Res.9(5):1332–1356.CrossRefGoogle Scholar
  47. Rubin, J. 1983. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions.Water Resour. Res.19(5):1231–1252.CrossRefGoogle Scholar
  48. Schulz, H. D. and E. J. Reardon. 1983. A combined mixing cell/analytical model to describe two-dimensional reactive solute transport for unidirectional groundwater flow.Water Resour. Res.19(2):493–502.CrossRefGoogle Scholar
  49. Smith, J. M. 1981. Chemical Engineering Kinetics. R. R. Donnelley & Sons Company. 676 pp.Google Scholar
  50. Steefel, C. I. and S. B. Yabusaki. 1996.OS3D/GIMRT Software for Modeling MultiComponent-Multidimensional Reactive Transport User’s Manual and Programmer’s Guide. PNL-11166. Pacific Northwest Laboratory, Richland, WA.Google Scholar
  51. Steefel, C. I. and K. T. B. MacQuarrie, 1996. Approaches to modeling of reactive transport in porous media. In P. Lichtner et al. eds., Reviews in Mineralogy, Vol. 34, Reactive Transport in Porous Media, pp. 84–129. Mineralogical Society of America, Washington, DC, 1996.Google Scholar
  52. Stumm, W., and J. J. Morgan. 1981.Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley & Sons, New York, NY, 780 pp.Google Scholar
  53. Taylor, S. W. and P. R. Jaffe. 1990a. Biofilm growth and the related changes in the physical properties of a porous medium. 1. experimental investigation.Water Resour. Res.26(9):2153–2159Google Scholar
  54. Taylor, S. W. and P. R. Jaffe. 1990b. Biofilm growth and the related changes in the physical properties of a porous medium. 2. permeability.Water Resour. Res.26:(9):2161–2169.CrossRefGoogle Scholar
  55. Theis, T. L., D. J. Kirkner, and A. A. Jennings. 1982.Multi-solute Subsurface Transport Modeling for Energy Solid Wastes. Tech. Progress Report C00–10252–3. Department of Civil Engineering, University of Notre Dame, Indiana.Google Scholar
  56. Truesdell, A. H., and B. F. Jones. 1974. WATEQ, A computer program for calculating chemical equilibria of natural waters.J. Res. U.S.Geol. Surv. 2(2):233–248.Google Scholar
  57. Valocchi, A. J., R. L. Street, and P. V. Roberts. 1981. Transport of ion-exchanging solutes in groundwater: Chromatographic theory and field simulation.Water Resour. Res.17:(5):1517–1527.CrossRefGoogle Scholar
  58. Walsh, M. P., S. L. Bryant, and L. W. Lake. 1984. Precipitation and dissolution of solids attending flow through porous media.AIChE J.30(2):317–328.CrossRefGoogle Scholar
  59. Widdowson, M. A., F. J. Molz, and L. D. Benefield. 1988. A numerical transport model for oxygen-and nitrate-based respiration linked to substrate and nutrient availability in porous mediaWater Resour. Res.24(9):1553–1565.CrossRefGoogle Scholar
  60. Westall, J. C., J. L. Zachary, and F. M. M. Morel. 1976.MINEQL: A Computer Program for the Calculation of Chemical Equilibrium Composition of Aqueous System. Technical Note 18. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, 91 pp.Google Scholar
  61. Yeh, G. T., and D. S. Ward. 1980.FEMWATER: A Finite Element Model of WATER Flow through Saturated-Unsaturated Porous Media. ORNL-5567. Oak Ridge National Laboratory, Oak Ridge, TN.CrossRefGoogle Scholar
  62. Yeh, G. T., and D. S. Ward. 1981.FEMWATTE.: A Finite Element Model of WASTE Transport through Saturated-Unsaturated Porous Media. ORNL-5601. Oak Ridge National Laboratory, Oak Ridge, TN.CrossRefGoogle Scholar
  63. Yeh, G. T. 1987.FEMWATER: A Finite Element Model of WATER Flow through Saturated-Unsaturated Porous Media - First Revision. ORNL-5567/R1. Oak Ridge National Laboratory, Oak Ridge, TN.CrossRefGoogle Scholar
  64. Yeh, G. T. and V. S. Tripathi. 1989. A critical evaluation of recent developments of hydrogeochemical transport models of reactive multi-chemical components.Water Resour. Res.25(1):93–108.CrossRefGoogle Scholar
  65. Yeh, G. T. and V. S. Tripathi. 1990.HYDROGEOCHEM: A Coupled Model of HYDROlogic Transport and GEOCHEMical Equilibria in Reactive Multicomponent Systems. ORNL-6371. Oak Ridge National Laboratory, Oak Ridge, TN.CrossRefGoogle Scholar
  66. Yeh, G.T. 1990. A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations.Water Resour. Res.26(2):1133–1144.CrossRefGoogle Scholar
  67. Yeh, G. T., J. R. Chang, and T. E. Short. 1992. An exact peak capturing and essentially oscillation-free scheme to solve advection-dispersion-reactive transport equations.Water Resour. Res.28(11):2937–2951.CrossRefGoogle Scholar
  68. Yeh, G. T., G. A. Iskra, J. E. Szecösdy, J. M. Zachara, and G. P. Streile. 1995a.KEMOD: A Mixed Chemical Kinetic and Equilibrium Model of Aqueous and Solid Phase Reactions. PNL-10380, Pacific Northwest Laboratory, Richland, WA.CrossRefGoogle Scholar
  69. Yeh, G. T., J. R. Cheng, H. P. Cheng, and C. H. Sung. 1995b. An adaptive local grid refinement based on the exact peak capturing and oscillation free scheme to solve transport equations.Computers and Fluids24(3):293–332.CrossRefGoogle Scholar
  70. Yeh, G. T. and H. P. Cheng. 1996. On diagonalization of coupled hydrologic transport and geochemical reaction equations. In Mary F. Wheeler ed.IMA 79 Environmental Studies: Mathematical Computational and Statistical Analysis373–398. Springer-Verlag New York, Inc.Google Scholar
  71. Yeh, G. T., J. R. Cheng, and T. E. Short. 1997a.2DFATMIC: Users’ Manual of a Two-Dimensional Model of Subsurface Flow Fat and Transport of Microbes and Chemicals. EPA/600/R-97–052. National Risk Management Research Laboratory, U.S. E.P.A., Ada, OK 74820.Google Scholar
  72. Yeh, G. T., J. R. Cheng, and T. E. Short. 1997b.3DFATMIC: Users’ Manual of a Three-Dimensional Model of Subsurface Flow Fat and Transport of Microbes and Chemicals. EPA/600/R-97–053. National Risk Management Research Laboratory, U.S. E.P.A., Ada, OK 74820.Google Scholar
  73. Yeh, G. T., J. R. Cheng, and T. E. Short. 1997c.User’s Manual for Two(2DFATMIC) and Three-(3DFATMIC) Dimensional Subsurface Flow Fate and Transport of Microbes and Chemicals Models. EPA/600/SR-97/052. August 1997. National Risk Management Research Laboratory, Ada, OK 74820.Google Scholar
  74. Yeh, G. T., G. Iskra, J. M. Zachara and J. E. Szecsody. 1998. Development and verification of a mixed chemical kinetic and equilibrium model.Advances in Environmental Research2:24–56.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gourt-Tsyh Yeh
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations