Advertisement

Temperature

  • Charles S. Burks
  • Judy A. Johnson
  • Dirk E. Maier
  • Jerry W. Heaps

Abstract

Cold and heat have long been used either to disinfest stored products, or to protect products from insect infestation. At extremely high or low temperatures stored-product insects are killed. More moderate high or low temperatures are far less lethal, but can still prevent population increase and thus protect stored products. (1992) reviewed temperatures and times necessary for disinfestation with extreme temperatures. (1965) presented minimum temperatures required for two generations per year for a wide variety of stored-product pests, thereby providing practical guidance for use of cold to protect stored products. Recent reviews provide a comprehensive overview of physiology of extreme temperatures in insects (Lee 1991, Denlinger and Lee 1998). Other reviews examine the use of extreme temperatures for stored product insect pest management (Fields and Muir 1995, Mason and Strait 1998), but have tended to focus primarily on insect pests of grain.

Keywords

Cold Storage Cold Acclimation Cold Tolerance Cold Treatment Chilling Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Ahmed, M. S. H., A. A. Hameed, and A. Kadhum. 1986. Disinfestation of commercially packed dates by a combination treatment. Acta Alimentaria 15: 221–226.Google Scholar
  2. A1-Azawi, A. F., H. S. El-Haidari, F. M. Aziz, and A. K. Murad. 1983a. Effect of high temperatures on fig moth Ephestia cautella in Iraq. Date Palm J. 2:79–85.Google Scholar
  3. Al-Azawi, A. F., H. S. El-Haidari, H. M. Al-Saud, and F. M. Aziz. 1983b. Effect of reduced atmospheric pressure with different temperatures in Ephestia cautella, a pest of stored dates in Iraq. Date Palm J. 2: 223–233.Google Scholar
  4. Al-Azawi, A. F., H. S. El-Haidari, F. M. Aziz, A. K. Murad, and H. M. Al-Saud. 1984. The effect of high temperatures on the dried fruit beetle Carpophilus hemipterus (L.), a pest of stored dates in Iraq. Date Palm J. 3:327-336.Google Scholar
  5. ASHRAE. 1994. 1994 ASHRAE Handbook. Refrigeration. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, Georgia.Google Scholar
  6. Banks, J., and P. Fields. 1995. Physical methods for insect control in stored-grain ecosystems, pp. 353–409. In D. S. Jayas, N. D. G. White and W. E. Muir [eds.], Stored-Grain Ecosystems. Marcel Dekker, Inc., New York.Google Scholar
  7. Batchelor, L. D., A. W. Christie, E. H. Guthier, and R. G. LaRue. 1924. Sun-drying, and dehydration of walnuts. Univ. Calif., College Agric, Agric. Exp. Sta. Bull., 25 pp.Google Scholar
  8. Baust, J. G., and L. K. Miller. 1970. Variations in glycerol content and its influence on cold hardiness in the Alaskan carabid beetle, Pterostichus brevicornis. J. Insect Physiol. 16: 979–990.CrossRefGoogle Scholar
  9. Baust, J. G., and L. K. Miller. 1972. Influence of low temperature acclimation on cold hardiness in the beetle, Pterostichus brevicornis. J. Insect Physiol. 18: 1935–1947.CrossRefGoogle Scholar
  10. Bolin, H. R. 1976. Texture and crystallization control in raisins. J. Food Sci. 41:1316–1319.CrossRefGoogle Scholar
  11. Brokerhof, A. W., H. J. Banks, and R. Morton. 1992. A model for time-temperature-mortality relationships for eggs of the webbing clothes moth, Tineola bisselliella (Lepidoptera, Tineidae), exposed to cold. J. Stored Prod. Res. 28: 269–277.CrossRefGoogle Scholar
  12. Brokerhof, A. W., R. Morton, and H. J. Banks. 1993. Time-mortality relationships for different species and developmental stages of clothing moths (Lepidoptera: Tineidae) exposed to cold. J. Stored Prod. Res. 29: 277–282.CrossRefGoogle Scholar
  13. Brooker, D. B., F. W. Bakker-Arkema, and C. W. Hall. 1992. Drying and storage of grains and oilseeds. AVI, New York.Google Scholar
  14. Burks, C. S., and D. W. Hagstrum. 1999. Rapid cold hardening capacity in five species of coleopteran pests of stored grain. J. Stored Prod. Res. 35: 65–75.CrossRefGoogle Scholar
  15. Burks, C. S., D. W. Hagstrum, K. E. Hampton, and A. B. Broce. 1997. Crystallization temperature and chilling injury during overwintering in a feral face fly (Diptera: Muscidae) population. Environ. Entomol. 26: 1124–1130.Google Scholar
  16. Burrell, N. J. 1982. Refrigeration, pp. 407–441. In C. N. Christensen [ed.], Storage of Cereal Grains and Their Products. Am. Assoc. Cereal Chem., St. Paul, Minnesota.Google Scholar
  17. Canellas, J., C. Rossello, S. Simal, L. Soler, and A. Mulet. 1993. Storage conditions affect quality of raisins. J. Food Sci. 58: 805–809.CrossRefGoogle Scholar
  18. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: development rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80: 790–796.Google Scholar
  19. Claflin, J. K., D. E. Evans, A. G. Fane, and R. J. Hill. 1986. The thermal disinfestation of wheat in a spouted bed. J. Stored Prod. Res. 22: 153–161.CrossRefGoogle Scholar
  20. Cline, D. L. 1970. Indian-meal moth egg hatch and subsequent larval survival after short exposure to low temperature. J. Econ. Entomol. 63: 1081–1083.Google Scholar
  21. Couey, H. M., E. S. Linse, and A. N. Nakamura. 1984. Quarantine procedure for Hawaiian papayas using heat and cold treatments. J. Econ. Entomol. 77: 984–988.Google Scholar
  22. Coulson, S. J., and J. S. Bale. 1991. Anoxia induces rapid cold hardening in the housefly Musca domestica (Diptera: Muscidae). J. Insect Physiol. 37: 497–502.CrossRefGoogle Scholar
  23. CSIRO. 1998. CSIRO entomology — report of research 1995-1997 — stored products and structural pestsGoogle Scholar
  24. Czajka, M. C, and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.Google Scholar
  25. Denis, S. P. 1999. Exploratory research on freeze treatment for disinfestation of dates, pp. 70–1 to 70-3. In G. Obenauf and A. Williams [eds.], Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. Methyl Bromide Alternatives Outreach, San Diego, California.Google Scholar
  26. Denlinger, D. L., and R. E. Lee, Jr. 1998. Physiology of cold sensitivity, pp. 57–95. In G. J. Hallman and D. L. Denlinger [eds.], Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder, Colorado.Google Scholar
  27. Denlinger, D. L., and G. D. Yocum. 1998. Physiology of heat sensitivity, pp. 7–54. In G. J. Hallman and D. L. Denlinger [eds.], Temperature Sensitivity in Insects and Applications in Integrated Pest Management. Westview Press, Boulder, Colorado.Google Scholar
  28. Denlinger, D. L., K. H. Joplin, C.-P. Chen, and R. E. Lee, Jr. 1991. Cold shock and heat shock, pp. 131–148. In D. L. Denlinger and Richard E. Lee, Jr. [eds.], Insects at Low Temperature. Chapman and Hall, New York.CrossRefGoogle Scholar
  29. Dermott, T., and D. E. Evans. 1978. An evaluation of fluidized bed heating as a means of disinfesting wheat. J. Stored Prod. Res. 14: 1–12.CrossRefGoogle Scholar
  30. Donahaye, E., S. Navarro, and M. Rinder. 1991. The influence of different treatments causing emigration of nitidulid beetles. Phytoparasitica 19: 273–282.CrossRefGoogle Scholar
  31. Dosland, O. 1995. The Chester heat treatment experiment 6/94, pp. 6615–6617, Association Operative Millers-Bulletin.Google Scholar
  32. Dosland, O. 1996. Practical research to determine effect heat parameters for the control of stored-product insect, pp. 6615–6616, Association Operative Millers-Bulletin.Google Scholar
  33. Dowdy, A. K. 1999a. Penetration of heat into cereal-grain processing equipment during a facility heat treatment..Google Scholar
  34. Dowdy, A. K. 1999b. Heat treatment as an alternative to methyl bromide fumigation in cereal processing plants, pp. 1089–1095. In J. Zuzan, L. Quan, L. Yongsheng, T. Xiachang, and G. Liaghua [eds.], Proc. 7th Intl. Working Conf. Stored Prod. Prot. Sichuan Publishing House, Chengdu, Peoples Republic of China.Google Scholar
  35. Dowdy, A. K., and P. W. Fields. 1998. Heat plus diatomaceous earth treatment for stored-product insect management in flour mills, pp 71–1 to 71-3. In G. Obenauf and A. Williams [eds.], Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. Methyl Bromide Alternatives Outreach, Orlando, Florida.Google Scholar
  36. Dowdy, A. K., and Bh. Subramanyam. 1999. Comparison of temperature distribution during heat treatments using TempAir or Aggreko Systems. Web site,.Google Scholar
  37. Edney, E. B. 1977. Water Balance in Land Arthropods. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  38. Evans, D. E. 1981. Thermal acclimation in several species of stored-grain beetles. Australian J. Zool. 29: 483–492.CrossRefGoogle Scholar
  39. Evans, D. E. 1983. The influence of relative humidity and thermal acclimation on the survival of adult grain beetles in cooled grain. J. Stored Prod. Res. 19: 173–180.CrossRefGoogle Scholar
  40. Evans, D. E. 1987. Some biological and physical constraints to the use of heat and cold for disinfesting and preserving stored products, pp. 149–164. In E. Donahaye and S. Navarro [eds.], Proc. 4th Intl. Working Conf. Stored-Prod. Prot., Tel Aviv, Israel.Google Scholar
  41. Evans, D. E., and T. Dermott. 1981. Dosage-mortality relationships for Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) exposed to heat in a fiuidized-bed. J. Stored Prod. Res. 17: 53–64.CrossRefGoogle Scholar
  42. Evans, D. E., G. R. Thorpe, and T. Dermott. 1983. The disinfestation of wheat in a continuous-flow fluidized bed. J. Stored Prod. Res. 19: 125–137.CrossRefGoogle Scholar
  43. Evans, D. E., G. R. Thorpe, and J. W. Sutherland. 1984. Large scale evaluation of fluid-bed heating as a means of disinfesting grain, pp 523–530. In R. B. Mills, V. F. Wright, and J. R. Pedersen [eds.], Proc. 3rd Intl. Working Conf. Stored Prod. Entomol., Manhattan, Kansas.Google Scholar
  44. Fields, P. G. 1990. The cold-hardiness of Cryptolestes ferrugineus and the use of ice nucleation-active bacteria as a cold-synergist, pp. 1183–1191. In F. Fluerat-Lessard and P. Ducom [eds.], Proc. 5th Intl. Working Conf. Stored-Prod. Entomol..Google Scholar
  45. Fields, P. G. 1992. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 28: 89–118.CrossRefGoogle Scholar
  46. Fields, P. G. 1993. Reduction of cold tolerance of stored-product insects by ice-nucleating-active bacteria. Environ. Entomol. 22: 470–476.Google Scholar
  47. Fields, P. G., and W. E. Muir. 1995. Physical Control, pp. 195–221. In Bh. Subramanyam and D. W. Hagstrum [eds.], Integrated Management of Insects in Stored Products. Marcel Dekker, New York.Google Scholar
  48. Fields, P. G., and N. D. G. White. 1997. Survival and multiplication of stored-product beetles at simulated and actual winter temperatures. Can. Entomol. 129: 887–898.CrossRefGoogle Scholar
  49. Fields, P. G., F. Fleurat-Lessard, L. Lavenseau, G. Febvay, L. Peypelut, and G. Bonnot. 1998. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J. Insect Physiol. 44: 955–965.CrossRefGoogle Scholar
  50. Flinn, P. W., D. W. Hagstrum, W. E. Muir, and K. Sudayappa. 1992. Spatial model for simulating changes in temperature and insect population dynamics in stored grain. Environ. Entomol. 21: 1351–1356.Google Scholar
  51. Foster, G. H. 1982. Drying Cereal Grains, pp. 79–116. In C. N. Christensen [ed.], Storage of Cereal Grains and Their Products. Am. Assoc. Cereal Chem., St. Paul, Minnesota.Google Scholar
  52. Foster, G. H., and J. Tuite. 1992. Aeration and stored grain management, pp. 219–247. In D. B. Sauer [ed.], Storage of Cereal Grains and Their Products. Am. Assoc. Cereal Chem., St. Paul, Minnesota.Google Scholar
  53. Gould, W. P. 1988. A hot water/cold storage quarantine treatment for grapefruit infested with the Caribbean fruit fly. Proc. Fla. State Hortic. Soc. 101: 190–192.Google Scholar
  54. Gould, W. P. 1994. Cold storage, pp. 119–132. In J. L. Sharp and G. J. Hallman [eds.], Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado.Google Scholar
  55. Hagstrum, D. W. 1987. Seasonal variation of stored wheat environment and insect populations. Environ. Entomol. 16: 77–83.Google Scholar
  56. Hagstrum, D. W., and P. W. Flinn. 1994. Survival of Rhyzopertha dominica (Coleoptera: Bostrichidae) in stored wheat under fall and winter conditions. Environ. Entomol. 23: 390–395.Google Scholar
  57. Hallman, G. J., and J. W. Armstrong. 1994. Heated air treatments, pp. 149–163. In J. L. Sharp and G. J. Hallman [eds.], Quarantine Treatments for Pests of Food Plants. Westview, San Francisco.Google Scholar
  58. Hallman, G. J., and J. L. Sharp. 1994. Radio frequency heat treatments, pp. 165–170. In J. L. Sharp and G. J. Hallman [eds.], Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado.Google Scholar
  59. Halverson, S. L., W. E. Burkholder, T. S. Bigelo, E. V. Nordheim and M. E. Misenheimer. 1996. High power microwave radiation as an alternative insect control method for stored products. J. Econ. Entomol. 89: 1638–1648.Google Scholar
  60. Hanc, Z., and O. Nedved. 1999. Chill injury at alternating temperatures in Orchesella cincta (Colembola: Entomobryidae) and Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur. J. Entomol. 96: 165–168.Google Scholar
  61. Hanzal, R., and A. Jegorov. 1991. Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation. Comp. Biochem. Physiol. 100A: 957–962.CrossRefGoogle Scholar
  62. Hardenburg, R. E. 1981. Storage recommendations, shelf life, and respiration rates for horticultural crops, pp. 261–285. In E. E. Finney and A. A. Hanson [eds.], CRC Handbook of Transportation and Marketing in Agriculture. CRC Press, Boca Raton, Florida.Google Scholar
  63. Hardenburg, R. E., A. E. Watada, and C. Y. Wang. 1986. The commercial storage of fruits, vegetables and florist and nursery stocks, Agricultural Handbook No. 66. United States Department of Agriculture, Agricultural Research Service, Washington, District of Columbia.Google Scholar
  64. Hazel, J. R. 1995. Thermal adaptations in biological membranes: is homeoviscous adaptation the explanation? Annu. Review Physiol. 57: 19–42.CrossRefGoogle Scholar
  65. Heaps, J. W. 1988. Turn on the heat to control insects. Dairy and Food Sanitation 8:416–418.Google Scholar
  66. Heaps, J. 1994. Temperature control for insect elimination, pp. 6476–6470, Association Operative Millers-Bulletin.Google Scholar
  67. Heaps, J. 1996. Heat for stored products insects. IPM Practitioner 18: 18–19.Google Scholar
  68. Heaps, J. W., and T. Black. 1994. Using portable rented electric heaters to generate heat and control stored product insects, pp. 6408–6411, Association Operative Millers-Bulletin.Google Scholar
  69. Hill, J. E., S. R. Roberts, D. M. Brandon, S. C. Scardaci, J. F. Williams, and R. G. Mutters. 1998. Rice production in California (10/13). Univ. Calif. Coop. Ext. Berkeley, California.Google Scholar
  70. Hochachka, P. W., and J. Dunn. 1986. Protecting cells and tissues against hypoxia and hypothermia, pp. 57–76. In J. R. Sutton, C. S. Houston, and G. Coates [eds.], Hypoxia and Cold. Praeger, New York.Google Scholar
  71. Hooch, A., D. Topp, B. C. Zieciher, and Z. Mer. 1999. Methyl bromide alternatives: evaluation of a recirculating safe-heat thermal pest eradication chamber to control commodity pests. Fumigants & Pheromones 51:9.Google Scholar
  72. Hottiger, T., D. d. Virgilio, W. Bell, T. Boiler, and A. Wiemken. 1992. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. Eur. J. Biochem. 210: 125–132.CrossRefGoogle Scholar
  73. Howe, R. W. 1965. A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. J. Stored Prod. Res. 1:177–184.CrossRefGoogle Scholar
  74. Hutchinson, J. B. 1944. The drying of wheat. Ill The effect of temperature on germination capacity. J. Soc. Chem. Ind. 63: 104–107.Google Scholar
  75. Imholte, T. J., and T. K. Imholte-Tauscher. 1999. Engineering for Food Safety and Sanitation, Second Edition, Technical Institute of Food Safety. Woodinville, Washington.Google Scholar
  76. Joanisse, D. R., and K. B. Storey. 1998. Oxidative stress and antioxidants in stress and recovery of cold-hardy insects. Insect Biochem. Mol. Biol. 28: 23–30.CrossRefGoogle Scholar
  77. Johnson, J. A., H. R. Bolin, G. Fuller, and J. F. Thompson. 1992. Efficacy of temperature treatment for insect disinfestation of dried fruits and nuts, pp. 105–118. Prune Research Reports, Prune Marketing Board.Google Scholar
  78. Johnson, J. A., R. F. Gill, K. A. Valero, and S. A. May. 1996. Survival of navel orangeworm (Lepidoptera: Pyralidae) during pistachio processing. J. Econ. Entomol. 89: 197–203.Google Scholar
  79. Johnson, J. A., K. A. Valero, and M. M. Hannel. 1997. Effect of low temperature storage on survival and reproduction of Indianmeal moth (Lepidoptera: Pyralidae). Crop Prot. 16: 519–523.CrossRefGoogle Scholar
  80. Johnson, J. A., P. V. Vail, E. L. Soderstrom, C. E. Curtis, D. G. Brandi, J. S. Tebbets, and K. A. Valero. 1998. Integration of non-chemical, postharvest treatments for control of navel orangeworm (Lepidoptera: Pyralidae) and Indianmeal moth (Lepidoptera: Pyralidae) in walnuts. J. Econ. Entomol. 91: 1437–1444.Google Scholar
  81. Kasmire, R. F., and J. F. Thompson. 1992. III. Selecting a cooling method, pp. 63–68. In A. A. Kader [ed.], Postharvest Technology of Horticultural Crops. University of California, Division of Agriculture and Natural Resources, Oakland, California.Google Scholar
  82. Keever, D. W., B. R. Wiseman, and N. W. Widstrom. 1986. Effects of harvesting and drying on maize weevil populations in field-infested corn, pp. 447–453. In E. Donahaye and S. Navarro [eds.], Proc. 4th Intl. Working Conf. Stored-Prod. Prot., Tel Aviv, Israel.Google Scholar
  83. Kelty, J. D., and R. E. Lee, Jr. 1999. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J. Insect Physiol. 45: 719–726CrossRefGoogle Scholar
  84. Kelty, J. D., K. A. Killian, and R. E. Lee, Jr. 1996. Cold shock and rapid cold-hardening of pharate adult flesh flies (Sarcophaga crassipalpis): effects on behaviour and neuromuscular function following eclosion. Physiol. Entomol. 21: 283–288.CrossRefGoogle Scholar
  85. Kice, J. 1985. Skilled Air Manual for Milling and Other Industries. Kice Industries, Wichita, Kansas, 126 pp.Google Scholar
  86. Kirkpatrick, R. L. 1975. Infrared radiation for control of lesser grain borers and rice weevils in bulk wheat. J. Kansas. Entomol. Soc. 48: 100–104.Google Scholar
  87. Kirkpatrick, R. L., and A. Cagle. 1978. Controlling insects in bulk wheat with infrared radiation. J. Kansas. Entomol. Soc. 51: 386–393.Google Scholar
  88. Kirkpatrick, R. L., and E. W. Tilton. 1972. Infrared radiation to control adult stored-product Coleoptera. J. Ga. Entomol. Soc. 7: 73–75.Google Scholar
  89. Klein, J. D., and S. Lurie. 1990. Prestorage heat treatments as a means of improving poststorage quality of apples. J. Am. Soc. Hortic. Sci. 115: 265–269.Google Scholar
  90. Lee, R. E., Jr. 1980. Physiological adaptations of Coccinellidae to supranivean and subnivean hibernacula. J. Insect Physiol. 26: 135–138.CrossRefGoogle Scholar
  91. Lee, R. E., Jr. 1991. Principles of insect low temperature tolerance, pp. 17–46. In R. E. Lee, Jr. and D. L. Denlinger [eds.], Insects at Low Temperatures. Chapman and Hall, New York.Google Scholar
  92. Lee, R. E., Jr., and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10: 309–315.CrossRefGoogle Scholar
  93. Lee, R. E., Jr., C.-P. Chen, and D. L. Denlinger. 1987a. A rapid cold-hardening process in insects. Science 238: 1415–1417.CrossRefGoogle Scholar
  94. Lee, R. E., Jr., C.-P. Chen, M. H. Meacham, and D. L. Denlinger. 1987b. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33: 587–592.CrossRefGoogle Scholar
  95. Lee, R. E., Jr., J. M. Strong-Gunderson, M. R. Lee, and E. C. Davidson. 1992. Ice-nucleating active bacteria decrease the cold-hardiness of stored grain insects. J. Econ. Entomol. 85: 371–374.Google Scholar
  96. Lee, R. E., Jr., M. R. Lee, and J. M. Strong-Gunderson. 1995. Biological control of insect pests using ice-nucleating microorganisms, pp. 257–269. In R. E. Lee, Jr., G. J. Warren, and L. V. Gusta [eds.], Biological Ice Nucleation and Its Applications. American Society of Physiology Press, St. Paul, Minnesota.Google Scholar
  97. Lee, R. E., Jr., J. P. Costanzo, and M. R. Lee. 1998. Reducing cold-hardiness of insect pests using ice nucleating active microbes, pp. 97–124. In G. J. Hallman and D. L. Denlinger [eds.], Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder, Colorado.Google Scholar
  98. Levins, R. 1969. Thermal acclimation and heat resistance in Drosophila species. Am. Naturalist 103: 483–499.CrossRefGoogle Scholar
  99. Lewthwaite, S. E., P. R. Dentener, S. M. Alexander, K. V. Bennett, D. J. Rogers, J. H. Maindonald, and P. G. Connolly. 1998. High temperature and cold storage treatments to control Indian meal moth, Plodia inlerpunclella (Hübner). J. Stored Prod. Res. 34: 141–150.CrossRefGoogle Scholar
  100. Linak, J. G. 1998. Energy required for heat treatment: how to figure out how much power you need to kill the bugs. Milling Journal October/November/December, pp. 84–86.Google Scholar
  101. Lindgren, D. L. and Vincent, L. E. 1953. Nitidulid beetles infesting California dates. Hilgardia 22:97–117Google Scholar
  102. Lowe, E., L. B. Rockland, and K. Yanase. 1961. Studies on English (Persian) walnuts, Juglans regia. IV. Belt-trough drying of in-shell walnuts. Food Tech. 15: 116–117.Google Scholar
  103. Maier, D. E. 1994. Chilled aeration and storage of U.S. crops-a review, pp. 300–311. In E. Highley, E. J. Wright, H. J. Banks and B. R. Champ [eds.], Proc. 6th Intl. Working Conf. Stored-Prod. Prot. CAB International, Canberra, Australia.Google Scholar
  104. Maier, D. E. 1998. Purdue Grain Lab-Grain Chilling Project.Google Scholar
  105. Maier, D. E., and R. A. Rulon. 1996. Evaluation and optimization of a new commercial grain chiller. Appl. Engg. Agric. 12: 725–730.Google Scholar
  106. Maier, D. E., R. A. Rulon, and L. J. Mason. 1997. Chilled versus ambient aeration and fumigation of stored popcorn. Part 1: temperature management. J. Stored Prod. Res. 33: 39–49.CrossRefGoogle Scholar
  107. Maier, D. E., W. H. Adams, J. E. Throne, and L. J. Mason. 1996. Temperature management of the maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) in three locations in the United States. J. Stored Prod. Res. 32: 255–273.CrossRefGoogle Scholar
  108. Maier, V. P., Metzer, D. M. and Huber, A. F. 1964. Effects of heat processing on the properties of dates. Date Growers Inst. Ann. Report. 41: 8–9.Google Scholar
  109. Mangan, R. L., and G. J. Hallman. 1998. Temperature treatments for quarantine security: new approaches for fresh commodities, pp. 201–234. In G. J. Hallman and D. L. Denlinger [eds.], Temperature Sensitivity in Insects. Westview Press, Boulder, Colorado.Google Scholar
  110. Mason, L. J., and C. A. Strait. 1998. Stored product integrated pest management with extreme temperatures, pp. 141–177. In G. J. Hallman and D. L. Denlinger [eds.], Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, Colorado.Google Scholar
  111. Mason, L. J., R. A. Rulon, and D. E. Maier. 1997. Chilled versus ambient aeration and fumigation of stored popcorn. Part 2: pest management. J. Stored Prod. Res. 33: 51–58.CrossRefGoogle Scholar
  112. Mitchell, F. G. 1992. II. Cooling methods, pp. 56–63. In A. A. Kader [ed.], Postharvest Technology of Horticultural Crops. University of California, Division of Agriculture and Natural Resources, Oakland, California.Google Scholar
  113. Mitchell, H. K., G. Moller, N. S. Petersen, and L. Lipps-Sarmiento. 1979. Specific protection from phenocopy induction by heat shock. Dev. Genet. 1: 181–192.CrossRefGoogle Scholar
  114. Moffitt, H. R., and A. K. Burditt, Jr. 1989. Low-temperature storage as a postharvest treatment for codling moth (Lepidoptera: Tortricidae) eggs on apple. J. Econ. Entomol. 82: 1679–1681.Google Scholar
  115. Montross, M. D. 1999. Finite element modeling of stored grain ecosystems and alternative pest control techniques. Unpublished PhD. Dissertation, Purdue University, West Lafayette, Indiana.Google Scholar
  116. Moss, J. I., and E. B. Jang. 1991. Effects of age and metabolic stress on heat tolerance of Mediterranean fruit fly (Diptera: Tephritidae) eggs. J. Econ. Entomol. 84: 537–541.Google Scholar
  117. Mueller, D. K. 1998. Stored Product Protection... a Period of Transition. Insects Limited, Inc., Indianapolis, Indiana.Google Scholar
  118. Mullen, M. A., and R. T. Arbogast. 1979. Time-temperature-mortality relationships for various stored-product insect eggs and chilling times for selected commodities. J. Econ. Entomol. 72: 476–478.Google Scholar
  119. Nedved, O. 1998. Modelling the relationship between cold injury and accumulated degree days in terrestial arthropods. Cryo-Letters 19: 267–274.Google Scholar
  120. Nedved, O. 2000. Chill tolerance in the tropical beetle Stenotarsus rotundus. CryoLetters 21: 25–30.Google Scholar
  121. Nedved, O., D. Lavy, and H. A. Verhoef. 1998. Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct. Ecol. 12: 186–824.CrossRefGoogle Scholar
  122. Nelson, S. O. 1995. Assessment of RF and microwave electric energy for stored-grain insect control, 15 pp. Preseneted at the June 18-25th, 1995 Annual International Meeting of the ASAE, Chicago, Illinois. American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
  123. Nelson, S. O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39: 1475–1484.Google Scholar
  124. Nelson, S. O. and J. A. Payne. 1982. RF dielectric heating for pecan weevil control. Trans. ASAE 25: 456–458, 464Google Scholar
  125. Nelson, S. O., P. G. Bartley Jr, and K. C. Lawrence. 1998. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control. Trans. ASAE 41: 685–692.Google Scholar
  126. Neven, L. G. 1998. Effects of heating rate on the mortality of fifth-instar codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 91: 297–301.Google Scholar
  127. Neven, L. G., and L. M. Rehfield. 1995. Comparison of prestorage heat treatments on fifth-instar codling moth (Lepidoptera: Tortricidae) mortality. J. Econ. Entomol. 88: 1371–1375.Google Scholar
  128. Norman, S. M., L. G. Houck, D. C. Fouse, J. W. Snider, P. F. Burkner, R. M. Perkins, and P. A. Nash. 1976. Changes in quality of field run dates under various combinations of outdoor and refrigerated storage. Date Growers Inst. Report. 53: 9–17.Google Scholar
  129. Nury, F. S., D. H. Taylor, and J. E. Brekke. 1960. Research for better quality in dried fruits raisins. Report 74. Agricultural Research Service, United States Department of Agriculture, Washington, District of Columbia, 26 pp.Google Scholar
  130. Ohta, A. T., K. Y. Kaneshiro, J. S. Kurihara, K. M. Kanegawa, and L. R. Nagumine. 1989. Gamma radiation and cold treatments for the disinfestation of the Mediterranean fruit fly to California-grown oranges and lemons. Pacific Science 43: 17–26.Google Scholar
  131. Payne, J. A., and J. M. Wells. 1974. Postharvest control of the pecan weevil in inshell pecans. J. Econ. Entomol. 67: 789–790.Google Scholar
  132. Pixton, S. W., and S. Warburton. 1971. Moisture content/relative humidity equilibrium of some cereal grains at different temperatures. J. Stored Prod. Res. 6: 283–293.CrossRefGoogle Scholar
  133. Pixton, S. W., and S. Warburton. 1973. Determination of moisture content and equilibrium relative humidity of dried fruit-sultanas. J. Stored Prod. Res. 8: 263–270.CrossRefGoogle Scholar
  134. Rhodes, A. A. 1986. Irradiation disinfestation of dried fruits and nuts. A final report. United States Department of Agriculture, Agricultural Research Service and Economic Research Service, Washington District of Columbia, 230 pp.Google Scholar
  135. Rojas, R. R., and R. A. Leopold. 1996. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33: 447–458.CrossRefGoogle Scholar
  136. Rulon, R. A., D. E. Maier, and M. D. Boehlje. 1999. A post harvest economic model to evaluate grain chilling as an IPM technology. J. Stored Prod. Res. 35: 369–383.CrossRefGoogle Scholar
  137. Salzman, R. A., R. A. Bressan, P. M. Hasegawa, E. N. Ashworth, and B. P. Bordelon. 1996. Programmed accumulation of LEA-like proteins during desiccation and cold acclimation of overwintering grape buds. Plant Cell Environ. 19: 713–720.CrossRefGoogle Scholar
  138. Schroeder, H. W., and E. W. Tilton. 1961. Infrared radiation for the control of immature insects in kernels of rough rice. U. S. Department of Agriculture, Agricultural Marketing Service, Market Quality Research Division, Washington, D.C.Google Scholar
  139. Sharp, J. L. 1993. Heat and cold treatments for post-harvest quarantine disinfestation of fruit flies (Diptera: Tephritidae) and other quarantine pests. Fla. Entomol. 76: 212–218.CrossRefGoogle Scholar
  140. Smith, R. D. 1984. Background, use, and benefits of blast freezers in the prevention and extermination of insects. Intl. Biodeterioration Symp. 6: 374–379.Google Scholar
  141. Soderstrom, E., D. Brandi, and B. Mackey. 1992. High temperature combined with carbon dioxide enriched or reduced oxygen atmospheres for control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 28: 235–238.CrossRefGoogle Scholar
  142. Soderstrom, E., D. Brandi, and B. Mackey. 1996. High temperature and controlled atmosphere treatment of codling moth (Lepidoptera: Tortricidae) infested walnuts using a gas-tight treatment chamber. J. Econ. Entomol. 89: 144–147.Google Scholar
  143. Strong-Gunderson, J. M., and R. A. Leopold. 1989. Cryobiology of Musca domestica: supercooling capacity and low-temperature tolerance. Environ. Entomol. 18: 756–762.Google Scholar
  144. Tammariello, S. P., J. P. Rinehart, and D. L. Denlinger. 1999. Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J. Insect Physiol. 45: 933–938.CrossRefGoogle Scholar
  145. Thompson, J. F. 1992a. Storage systems, pp. 69–78. In A. A. Kader [ed.], Postharvest Technology of Horticultural Crops. University of California, Division of Agriculture and Natural Resources, Oakland, California.Google Scholar
  146. Thompson, J. F. 1992b. Psychrometrics and perishable commodities, pp. 79–84. In A. A. Kadar [ed.], Postharvest Technology of Horticultural Crops. University of California, Division of Agriculture and Natural Resources, Oakland, California.Google Scholar
  147. Thorpe, G. E., D. E. Evans, and J. W. Sutherland. 1984. The development of a continuous-flow fluidizedbed high-temperature grain process, pp. 617–622. In B. E. Ripp, H. J. Banks, E. J. Bond, D. J. Bond, D. J. Calverley, E. G. Hay, and S. Navarro [eds.], Controlled Atmosphere and Fumigation in Grain Storages. Elsevier, Amsterdam.Google Scholar
  148. Tilton, E. W., and H. W. Schroeder. 1963. Some effects of infrared irradiation on the mortality of immature insects in kernels of rough rice. J. Econ. Entomol. 56: 727–730.Google Scholar
  149. Tilton, E. W., H. H. Vardell, and R. D. Jones. 1983. Infrared heating with vacuum for control of the lesser grain borer, (Rhyzopertha dominica F.), and the rice weevil, (Sitophilus oryzae (L.)) infesting wheat. J. Georgia Entomol. Soc. 18: 61–64.Google Scholar
  150. Turnock, W. J., R. J. Lamb, and R. P. Bodnaryk. 1983. Effects of cold stress during pupal diapause on the survival and development of Mamestra configurera (Lepidoptera: Noctuidae). Oecologia 56: 185–192.CrossRefGoogle Scholar
  151. UNEP 1992. Methyl bromide-its atmospheric science, technology and economics. Montreal Protocol Assessment Supplement, June 1992. United Nations Environment Programme, Nairobi.Google Scholar
  152. USDA-APHIS-PPQ. 1989. Plant Protection and Quarantine Treatment Manual. Plant Protection and Quarantine, Animal and Plant Health Inspection Service, United States Department of Agriculture, Washington, D.C.Google Scholar
  153. Vardell, H. H., and E. W. Tilton. 1981a. Control of the lesser grain borer, Rhyzopertha dominica (F.), and the rice weevil, Sitophilus oryzae (L.), in rough rice with a heated fluidized bed. J. Ga. Entomol. Soc. 16:521–524.Google Scholar
  154. Vardell, H. H., and E. W. Tilton. 1981b. Control of the lesser grain borer, Rhyzopertha dominica (F.), and the rice weevil, Sitophilus oryzae (L.), in wheat with a heated fluidized bed. J. Kansas Entomol. Soc. 54:481–485.Google Scholar
  155. Watters, F. L. 1991. Physical methods to manage stored-food pests, pp. 399–413. In J. R. Gorham [ed.], Ecology and Management of Food-Industry pests. FDA Technical Bulletin 4. Assoc. Official Analytical Chem., Arlington VI.Google Scholar
  156. White, N. D. G., and J. G. Leesch. 1996. Chemical Control, pp. 287–330. In Bh. Subramanyam and D. W. Hagstrum [eds.], Integrated Management of Insects in Stored Products. Marcel Dekker, New York.Google Scholar
  157. Whiting, D. C, S. P. Foster, and J. H. Maindonald. 1991. Effects of oxygen, carbon dioxide, and temperature on the mortality responses of Epiphyas postvittana (Lepidoptera: Tortricidae). J. Econ. Entomol. 84: 1544–1549.Google Scholar
  158. Wilkin, D. R. and G. Nelson. 1987. Control of insects in confectionery walnuts using microwaves. BCPC Mono., Stored Prod. Pest Cont. 37: 247–254Google Scholar
  159. Wolfe, G. R., D. L. Hendrix, and M. E. Salvucci. 1998. A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. J. Insect Physiol. 44: 597–603.CrossRefGoogle Scholar
  160. Worden, G.C. 1987. Freeze-outs for insect control. Association Operative Millers — Bulletin 4903-4904.Google Scholar
  161. Yocum, G. D., and D. L. Denlinger. 1992. Prolonged thermotolerance in the flesh fly, Sarcophaga crassipalpis, does not require continuous expression or persistence of the 72 kDa heat-shock protein. J. Insect Physiol. 38: 603–609.CrossRefGoogle Scholar
  162. Yocum, G. D., and D. L. Denlinger. 1994. Anoxia blocks thermotolerance and the induction of rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 19: 152–158.CrossRefGoogle Scholar
  163. Yocum, G. D., J. Zdarek, K. H. Joplin, R. E. Lee, Jr., D. C. Smith, K. D. Manter, and D. L. Denlinger. 1994. Alteration of the eclosion rhythm and eclosion behaviour in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol. 40: 13–21.CrossRefGoogle Scholar
  164. Yoder, J. A., and D. L. Denlinger. 1991. Water balance in flesh fly pupae and water vapor absorption associated with diapause. J. Exp. Biol. 157: 273–286.Google Scholar
  165. Yoder, J. A., G. J. Blomquist, and D. L. Denlinger. 1995. Hydrocarbon profiles from puparia of diapausing and non diapausing flesh flies (Sarcophaga crassipalpis) reflect quantitative rather than qualitative differences. Arch. Insect Biochem. Physiol. 28: 377–385.CrossRefGoogle Scholar
  166. Yoder, J. A., D. L. Denlinger, M. W. Dennis, and P. E. Kolattukudy. 1992. Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochem. Mol. Biol. 22: 237–243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Charles S. Burks
  • Judy A. Johnson
  • Dirk E. Maier
  • Jerry W. Heaps

There are no affiliations available

Personalised recommendations