Historically, both non-ionizing and ionizing radiation have been investigated for stored-product insect control. Non-ionizing radiation with quantum energy that is at least 2 orders of magnitude lower than that required to disrupt bonds of common organic molecules is benign compared to ionizing radiation. A comparison between non-ionizing and ionizing energy is shown in Table 1.


Electron Volt Throughput Rate Insect Mortality Selective Heating Tribolium Confusum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. AACE. 1990. Conducting Technical and Economic Evaluations in the Processing and Utility Industries, Recommended Practices and Standards, AACE, Inc.Google Scholar
  2. Adem, E., R. M. Uribe, F. L. Watters, and H. Bourges. 1981. Present status of corn grain disinfestation by irradiation in Mexico. Radiation Phys. Chem. 18: 555–567.Google Scholar
  3. Anonymous. 1971. Sterility Principle for Insect Control or Eradication, STI/PUB/265, IAEA, Vienna.Google Scholar
  4. Anonymous. 1986. Disinfection, Including Parasite Control of Dried Chilled and Frozen Food by Irradiation. ICGFI Task Force Meeting, Vienna.Google Scholar
  5. Anonymous. 1996a. Ionizing Radiation, Paragraph 1910.96, Occupational Safety and Health Administration, CH. XVII, 29CFR, Superintendent of Documents, USGPO, Washington, District of Columbia.Google Scholar
  6. Anonymous. 1996b. Ionizing Radiation for the Treatment of Food”, Paragraph 179.26, 21 CFR, CH. 1, USGPO, Washington, District of Columbia.Google Scholar
  7. Berger, M. J., and S. M. Seltzer. 1982. Stopping Powers and Ranges of Electrons and Positrons, NBSIR 82-2550-A, NIST, Washington, District of Columbia.Google Scholar
  8. Bull, J. O., and P. B. Cornwell. 1966. A comparison of the susceptibility of the grain weevil Sitophilus granarius to accelerated electrons and 60Co gamma radiation, pp. 157–176. In P. B. Cornwell [ed.], The Entomology of Radiation Disinfestation of Grain. Pergamon Press, New York.Google Scholar
  9. Cleland, M. R. 1975. Physical Aspects of a Process for the Disinfestation of Grain by Electron Beam Radiation. TIS 75-9, Radiation Dynamics Inc, Edgewood, New York.Google Scholar
  10. Cornwell, P. B. 1966. The Entomology of Radiation Disinfestation of Grain. Pergamon Press, New York.Google Scholar
  11. Farkas, J. 1985. Radiation processing of dry food ingredients, a review. Radiation Phys. Chem. 25: 271–280.Google Scholar
  12. Grosch, D. S., and L. E. Hopwood. 1979. Biological Effects of Radiations. Academic Press, New York.Google Scholar
  13. Hagstrum, D. W., and P. W. Flinn. 1995. Integrated Pest Management, pp. 399–408. In Bh. Subramanyam and D. W. Hagstrum [eds.], Integrated Management of Insects in Stored Products. Marcel Dekker, New York.Google Scholar
  14. Halverson, S. L., R. Plarre, W. E. Burkholder, T. S. Bigelow, J. H. Booske, and M. E. Misenheimer. 1997. Recent advances in the control of insects in stored products with microwaves. ASAE Paper 976098.Google Scholar
  15. Hayashi, T., Y. Takahashi, and S. Todoriki. 1997. Low energy electron effects on the sterility and viscosity of grains. J. Food Sci. 62: 858–860.CrossRefGoogle Scholar
  16. Kingston, H. M., P. J. Walter, W. G. Engelhart, and P. J. Parsons. 1997. Laboratory microwave safety, pp. 697–745. In H. M. Kingston, and S. J. Haswell [eds.], Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, and Applications. American Chemical Society, Washington, District of Columbia.Google Scholar
  17. Kirkpatrick, R. L., and A. Cagle. 1978. Controlling insects in bulk wheat with infrared radiation. J. Kansas Entomol. Soc. 51: 386–393.Google Scholar
  18. Kirkpatrick, R. L., and E. W. Tilton. 1972. Infrared radiation to control adult stored-product Coleoptera. J. Georgia Entomol. Soc. 7: 73–75.Google Scholar
  19. Lapidot, M., S. Saveanu, R. Padova, and I. Ross. 1991. Insect disinfestation by irradiation: feasibility and economic study, and organoleptic tests of the irradiated products. (IAEA-RC-273.3/7), Insect Disinfestation of Food and Agricultural Products by Irradiation, STI/PUB/895, IAEA, Vienna.Google Scholar
  20. Metaxes, R.C., and R.J. Meridith. 1993. Industrial Microwave Heating. Peter Peregrines Ltd., London, United Kingdom.Google Scholar
  21. Moreno, T. 1948. Microwave Transmission Design Data. Dover Publications, New York.Google Scholar
  22. Nablo, S. V., and J. C. Wood. 1998. Method and Apparatus for the Electron Beam Treatment of Powders and Aggregates in Pneumatic Transfer. U. S. Patent 5,801,387, Sept. 1, 1998.Google Scholar
  23. Nablo, S. V., J. C. Wood, M. F. Desrosiers, and V. Yu. Nagy. 1998. A fluidized bed process for electron sterilization of powders. Radiation Phys. Chem. 52: 479–485.CrossRefGoogle Scholar
  24. Nelson, S. O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39: 1475–1484Google Scholar
  25. Nelson, S. O., P. G. Bartley, Jr., and K. C. Lawrence. 1997. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control. ASAE Paper 973072.Google Scholar
  26. Pendlebury, J. B., D. J. Jeffries, E. J. Banham, and J. O. Bull. 1966. Some effects of gamma radiation on R. dominica, C. cautella, P. interpunctella and L. serricorne. In P. B. Cornwell [ed.], The Entomology of Radiation Disinfestation of Grain. Pergamon Press, New York.Google Scholar
  27. Salimov, R. A., V. G. Cherepkov, N. K. Kuksanov, and S. A. Kuznetzov. 2000. The use of electron accelerators for radiation disinfestation of grain. Radiat. Phys. Chem. 57: 625–627.CrossRefGoogle Scholar
  28. Tanaka, R., R. M. Uribe, A. De La Piedad, and E. Adem. 1983. Basic Study of Electron Irradiation Technique in Disinfestation Process of Maize. JAERI-M-83-239, Takasaki Radiation Chemistry Research Establishment, Japan.Google Scholar
  29. Tilton, E. W. and J. H. Brower. 1973. Status of the U.S. Department of Agriculture research and irradiation disinfestation of grain and grain products, pp. 295–309. In Radiation Preservation of Food, IAEA-SM-166/49, IAEA, Vienna.Google Scholar
  30. Tilton, E. W., W. E. Burkholder, and R. R. Cogburn, 1966. Effects of gamma radiation on Rhyzopertha dominica, Sitophilus oryzae, Tribolium confusum and Lasioderma serricorne. J. Econ. Entomol. 59: 1363–1368.Google Scholar
  31. Tilton, E. W., J. H. Brower, and R. R. Cogburn. 1971a. Critical evaluation of an operational bulk-grain and packaged product irradiator. Int. J. Radiat. Eng. 1: 49–59.Google Scholar
  32. Tilton, E. W., J. H. Brower, and R. R. Cogburn. 1971b. A method of dosimetry for a bulk-grain irradiator. Int. J. Appl. Radiat. Isot. 22: 577–580.CrossRefGoogle Scholar
  33. Watters, F. L. 1979. Potential of accelerated electrons for insect control in stored grain, pp. 278–286. In Proc. 2nd Intl. Working Conf. Stored-Prod. Entomol., Ibadan, Nigera.Google Scholar
  34. Watters, F. L., and K. F. MacQueen. 1967. Effectiveness of gamma radiation for control of 5 species of stored product insects. J. Stored Prod. Res. 3: 223–234.CrossRefGoogle Scholar
  35. Zakladnoy, G. A., A. Menshenin, E. S. Pertsovsky, R. A. Slimov, V. G. Cherepkov, B. F. Bogolyubov, and I. S. Stanev. 1982. Radiation disinfestation of grain in a port elevator with a capacity of 400 t/h. Atomic Energy 53: 57–61.Google Scholar
  36. Zaklaodnoy, G. A., A. I. Menshenin, E. S. Pertsovsky, R. A. Slimov, V. G. Cherepkov, B. F. Bogolyubov, and I. S. Stanev. 1989. Radiation disinfestation of grain in a port elevator with capacity of 400 T/h. Radiat. Phys. Chem. 34: 991–994.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Steven L. Halverson
  • Sam V. Nablo

There are no affiliations available

Personalised recommendations