Skip to main content

Catecholamines and angiotensinogen gene expression in kidney proximal tubular cells

  • Chapter

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 33))

Abstract

To investigate the molecular mechanism(s) of action of catecholamines on the expression of the angiotensinogen (ANG) gene in kidney proximal tubular cells, we used opossum kidney (OK) cells with a fusion gene containing the 5’-flanking regulatory sequence of the rat ANG gene fused with a human growth hormone (hGH) gene as a reporter, pOGH (rANG N-1498/+18), permanently integrated into their genomes. The level of expression of the ANG-GH fusion gene was quantified by the amount of immunoreactive-hGH (IR-hGH) secreted into the medium. The addition of norepinephrine (NE), isoproterenol (a β12-adrenergic receptor (AR) agonist) and iodoclonidine (an α2-AR agonist) stimulated the expression of the ANG-GH fusion gene in a dose-dependent manner, whereas the addition of epinephrine and phenylephrine (α1-AR agonist) had no effect. The stimulatory effect of NE was blocked by the presence of propranolol (β-AR blocker), atenolol (β1-AR blocker), yohimbine (α2-AR blocker), Rp-cAMP (an inhibitor of cAMP-dependent protein kinase AI & AII) and staurosporine (an inhibitor of protein kinase C), but was not blocked by ICI 118, 551 (β2-AR blocker) and prazosin (α1-AR blocker). The addition of a combination of isoproterenol and iodoclonidine or a combination of 8-Bromo-cAMP (8-Br-cAMP) and phorbol 12-myristate (PMA) synergistically stimulated the expression of the ANG-GH fusion gene as compared to the addition of isoproterenol, iodoclonidine, 8-Br-cAMP or PMA alone. Furthermore, the addition of NE, 8-Br-cAMP or PMA stimulated the expression of pOGH (rANG N-806/-779/ -53/+18), a fusion gene containing the putative cAMP responsive element (CRE, ANG N-806/-779) upstream of the ANG promoter (ANG N-53/+1 8) in OK cells, but had no effect on the expression of fusion genes containing the mutant of the CRE. Gel mobility shift assays revealed that the ANG-CRE binds with the DNA-binding domain (bZIP 254-327) of the cAMP-responsive binding protein (CREB). The binding of the labeled ANG-CRE to CREB (bZIP254-327) was displaced by unlabeled ANGCRE and the CRE of the somatostatin gene but not by the mutants of the ANG-CRE. Finally, NE stimulated the phosphorylation of CREB in OK cells. These studies demonstrate that the molecular mechanism(s) of NE action on the expression of the ANG gene in OK cells may be mediated via both the PKA and PKC signalling pathways and via the phosphorylation of CREB. The phosphorylated CREB then interacts with the CRE in the 5’-flanking region of the ANG gene and subsequently stimulates the gene expression. (Mol Cell Biochem 212: 73–79, 2000)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AC:

adenyllyl cyclase

ANG:

angiotensinogen

Ang I:

angiotensin I

Ang II:

angiotensin II

ACE:

angiotensin converting enzyme

AR:

adrenergic receptor

CRE:

cyclic AMP responsive element

CREB:

cyclic AMP responsive element binding protein

NE:

norepinephrine

OK:

opssum kidney

PKA:

protein kinase A

PKC:

protein kinase C

RAS:

renin-angiotensin system

References

  1. Ohkubo H, Kageyama R, Ujihara M, Hirose T, Inayama S, Nakanishi S: Cloning and sequence analysis of eDNA for rat angiotensinogen. Proc Natl Acad Sci USA 80: 2196–3000, 1983

    Article  PubMed  CAS  Google Scholar 

  2. Kageyama R, Ohkubo H, Nakanishi S: Primary structure of human preangiotensinogen deduced from the cloned eDNA sequence. Biochemistry 23: 3603–3609, 1984

    Article  PubMed  CAS  Google Scholar 

  3. Gaillard I, Clauser E, Corvol P: Structure of human angiotensinogen gene. DNA 8: 87–89, 1989

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka T, Ohkubo H, Nakanishi S: Common structural organization of the angiotensinogen and the al-antitrypsin genes. J Biol Chem 259: 8063–8065, 1984

    PubMed  CAS  Google Scholar 

  5. Mori M, Ishigaki K, Yamada T, Chen H, Sugiyama T, Serikawa T: Restriction fragment length polymorphisms of the angiotensinogen gene in inbred rat strains and mapping of the gene on chromosome 19q. Cytogenet Cell Genet 50: 42–45, 1989

    Article  PubMed  CAS  Google Scholar 

  6. Clouston WM, Fournier RE, Richard RI: The angiotensinogen gene is located on mouse chromosome 8. FEBS Lett 255: 419–422, 1989

    Article  PubMed  CAS  Google Scholar 

  7. Gaillard-Sanchez I, Mattei MG, Clauser E, Corvol P: Assignment by in situ hybridization of the angiotensinogen gene to chromosome band 1q4, the same region as the human renin gene. Hum Genet 84: 341–343, 1990

    Article  PubMed  CAS  Google Scholar 

  8. Jeunemaître X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charm A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P: Molecular basis of human hypertension: role of angiotensinogen. Cell 71: 169–180, 1992

    Article  PubMed  Google Scholar 

  9. Hata A, Namikara C, Sasaki M, Sato K, Nakamura T, Tamura K, Lalouel JM: Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 93: 1285–1287, 1994

    Article  PubMed  CAS  Google Scholar 

  10. Bloem LJ, Manatunga AK, Tewksbury DA, Howard Pratt J: The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children. J Clin Invest 95: 948–953, 1995

    Article  PubMed  CAS  Google Scholar 

  11. Forrester T, McFarlane-Anderson N, Bennet F, Wilks R, Puras A, Cooper R, Rotimi C, Durazo R, Tewksbury D, Morrison L: Angiotensinogen and blood pressure among blacks: findings from a community survey in Jamaica. J Hypertens 14: 315–321, 1996

    Article  PubMed  CAS  Google Scholar 

  12. Rotimi C, Puras A, Cooper R, McFarlane-Anderson N, Forrester T, Ogunbiyi O, Morrison L, Ward R: Polymorphisms of renin-angiotensin genes among Nigerians, Jamaicans and African Americans. Hypertension 27: 558–563, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Atwood LD, Kammerer CM, Samollow PB, Hinson JE, Shade RE, MaCluer JW: Linkage of essential hypertension to the angiotensinogen locus in Mexican Americans. Hypertension 30: 326–330, 1997

    Article  PubMed  CAS  Google Scholar 

  14. Chiang F-F, Hsu K-L, Tseng C-D, Hsiao W-H, Lo H-M, Chein T-H, Tseng Y-Z: Molecular variant M235T of the angiotensinogen gene is associated with essential hypertension in Taiwanese. J Hypertens 15: 607–611, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Fardella CE, Claverie X, Vignolo P, Montero J, Villarroel L: T235 variant of the angiotensinogen gene and blood pressure in the Chilean population. J Hypertens 16: 829–833, 1998

    Article  PubMed  CAS  Google Scholar 

  16. Jeunemaître X, Charm A, Rigat B, Houot AM, Soubrier F, Corvol P: Sib-pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet 88: 301–306, 1992

    Article  PubMed  Google Scholar 

  17. Jeunemaître X, Lifton RP, Hunt SC, Williams RR, Lalouel JM: Absence of linkage between the angiotensin converting enzyme and human essential hypertension. Nature Gen 1: 72–75, 1992

    Article  Google Scholar 

  18. Ueda S, Weir CJ, Inglis GC, Murray GD, Muir KW, Lees KR: Lack of association between angiotensin converting enzyme gene insertion/ deletion polymorphism and stroke. J Hypertens 13: 1597–1601, 1995

    PubMed  CAS  Google Scholar 

  19. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D: Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in man but not women in the Framingham heart study. Circulation 97: 1766–1772, 1998

    Article  PubMed  Google Scholar 

  20. Bonnardeaux A, Davies E, Jeunemaitre X, Féry I, Charru A, Clauser E, Tiret L, Combien F, Corvol P, Soubrier F: Angiotensin II type 1 receptor gene polymorphism in human essential hypertension. Hypertension 24: 63–69, 1994

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt S, Beige J, Walla-Friedel M, Michel MC, Sharma AM, Ritz E: A polymorphism in the gene for the angiotensin II type 1 receptor is not associated with hypertension. J Hypertens 15: 1385–1388, 1997

    Article  PubMed  CAS  Google Scholar 

  22. Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, Hatae T, Kajiwara N, Yagami K, Murakami K: Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and angiotensinogen genes. J Biol Chem 268: 11617–11621, 1993

    PubMed  CAS  Google Scholar 

  23. Dzau VJ, Ingelfinger JR: Molecular biology and pathophysiology of the intrarenal renin-angiotensin system. J Hypertens 7(suppl 7): 53–58,1989

    Google Scholar 

  24. Johnston CI, Fabris B., Jandeleit K: Intrarenal renin-angiotensin system in renal physiology and pathophysiology. Kidney Int 44(suppl 42): 559–563, 1993

    Google Scholar 

  25. Richou JP, Cordonnier JL, Bouhnik J, Clauser E, Corvol P, Menard P, Grignon G: Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res 122: 439–451, 1983

    Google Scholar 

  26. Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ: In situ hybridization evidence for angiotensinogen mRNA in the rat proximal tubule. A hypothesis for the intrarenal renin-angiotensin system. J Clin Invest 85: 417–423, 1990

    Article  PubMed  CAS  Google Scholar 

  27. Wolf G, Neilson EG: Angiotensin II as a hypertrophogenic cytokine for proximal tubular cells. Kidney Int 43(suppl 39): S100–S107, 1992

    Google Scholar 

  28. Terada Y, Tomita K, Nonoguch H, Marumo F: PCR localization of angiotensin II receptor and angiotensinogen mRNA in rat kidney. Kidney Int 43: 1251–1259, 1993

    Article  PubMed  CAS  Google Scholar 

  29. Tang SS, Jung F, Diamant D, Brown D, Baehinsky D, Hellman P, Ingelfinger J: Temperature-sensitive SV 40 immortalized rat proximal tubule cell line has functional renin-angiotensin system. Am J Physiol 268: F435–F446, 1995

    PubMed  CAS  Google Scholar 

  30. Loghman-Adham M, Rohrwasser A, Helin C, Zhang S, Terreros D, Inoue I, Lalouel J-M: A conditionally immortalized cell line from murine proximal tubule. Kidney Int 52: 229–239, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Chen M, Harris MP, Rose D, Smart A, He XR, Kretyler M, Briggs JP, Schnermann. Renin and renin mRNA in proximal tubule of the rat kidney. J Clin Invest 94: 237–243, 1994

    Article  PubMed  CAS  Google Scholar 

  32. Xie MH, Liu FY, Wong PC, Timmermans PBMWM, Cogan MG: Proximal nephron and renal effects of Dup 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int 38: 473–479, 1990

    Article  PubMed  CAS  Google Scholar 

  33. Cogan MG, Liu FY, Wong PC, Timmermans PBMWM: Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonist PD 123177 and Dup 753 on proximal nephron and renal transport. J Pharmacol Exp Ther 259: 687–691, 1991

    PubMed  CAS  Google Scholar 

  34. Burns KD, Inagami T, Harris RC: Cloning of a rabbit kidney cortex AT1 angiotensin II receptor that is present in proximal tubules epithelium. Am J Physiol 264: (Renal Fluid Electrolyte Physiol 33): F645–F654, 1993

    PubMed  CAS  Google Scholar 

  35. Harris RC, Becker BN, Cheng HF: Acute and chronic mechanisms for regulatory proximal tubule angiotensin II receptor expression. J Am Soc Nephrol 8: 306–313, 1997

    PubMed  CAS  Google Scholar 

  36. Cheng HF, Wang J-L, Vinson GP, Harris RC: Young SHR express increased type 1 angiotensin II receptors in renal proximal tubule. Am J Physiol 274: (Renal Physiol 43): F10–F17, 1998

    PubMed  CAS  Google Scholar 

  37. Kontogiannis J, Burns KD: Role of ATangiotensin II receptors in renal ischemic injury. Am J Physiol 274 (Renal Physiol 43): F79–F90, 1998

    PubMed  CAS  Google Scholar 

  38. Zhang CJ, Mayeux PR: Angiotensin II signalling activates the NOcGMP pathway in rat proximal tubules. Life Sci 63: PL75, 1998

    Article  PubMed  CAS  Google Scholar 

  39. Chan JSD, Chan AHH, Nie Z-R, Sikstrom R, Lachance S, Hashimoto S, Carrière S: Thyroid hormone, L-T3, stimulates the expression of the angiotensinogen gene in cultured opossum kidney (OK) cells. J Am Soc Nephrol 2: 1360–1367, 1992

    PubMed  CAS  Google Scholar 

  40. Ingelfinger JR, Boubounes B, Jung FF, Tang S: High glucose down-regulates expression of renin angiotensin system (RAS) in opossum kidney cells. Pediatr Nephrol 29: (abstr) 344A, 1991

    Google Scholar 

  41. Wang L, Lei C, Zhang S-L, Roberts KD, Tang S-S, Ingelfinger JR, Chan JSD, Synergistic effect of dexamethasone and isoproterenol on the expression of angiotensinogen in immortalized rat proximal tubular cells. Kidney Int 53: 287–295, 1998

    Article  PubMed  CAS  Google Scholar 

  42. Seikaly MG, Arant BS, Seney FD, Rutlege L and Green J: Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 86: 1352–1357, 1990

    Article  PubMed  CAS  Google Scholar 

  43. Braam B, Mitchell KD, Fox J and Navar LG: Proximal tubular secretion of the angiotensin II in rats. Am J Physiol 264: F891–F898, 1993

    PubMed  CAS  Google Scholar 

  44. Navar LG, Lewis L, Hymel A, Braam B and Mitchell KD: Tubular fluid concentrations and kidney contents of angiotensin I and II in anesthesized rats. J Am Soc Nephrol 5: 1153–1158, 1994

    PubMed  CAS  Google Scholar 

  45. Davis JO, Freeman RH: Mechanisms regulating renin release. Physiol Rev 56: 1–56, 1976

    PubMed  CAS  Google Scholar 

  46. Ekboir AS, Enera MA: Pre-and post-junctional potentiation of the adrenergic neurotransmission by angiotensin II in the perfused rabbit kidney. Gen Pharmacol 11: 395, 1980

    Article  PubMed  CAS  Google Scholar 

  47. Gagnon JA, Keller HL, Kokotis W, Schrier RW: Analysis of role of renin-angiotensin system in autoregulation of glomerular filtration. Am J Physiol 219: 491–496, 1970

    PubMed  CAS  Google Scholar 

  48. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE, Trippodo NC: Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol 233: F366–F372, 1977

    PubMed  CAS  Google Scholar 

  49. Blantz RC, Konnen KS, Tucker BJ: Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest 57: 419–434, 1976

    Article  PubMed  CAS  Google Scholar 

  50. Schuster VL, Kokko JP, Jacobson HR: Angiotensin II directly stimulates sodium reabsorption by angiotensin II in the kidney. J Clin Invest 73: 507–515, 1984

    Article  PubMed  CAS  Google Scholar 

  51. Liu FY, Cogan MG: Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest 84: 83–91, 1989

    Article  PubMed  CAS  Google Scholar 

  52. Harris PJ, Young JA: Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in rat kidney. Pflügers Arch 367: 1295–1297, 1977

    Article  Google Scholar 

  53. Hall JE, Guyton AC, Trippodo NC, Lohmeier TE, McCrea RE, Cowley ALW Jr: Intrarenal control of electrolyte excretion by angiotensin II. Am J Physiol 232: F538–F544, 1977

    PubMed  CAS  Google Scholar 

  54. Cogan MG: Angiotensin II: A powerful controller of sodium transport in the early proximal tubule. Hypertension 15: 451–458, 1990

    Article  PubMed  CAS  Google Scholar 

  55. Wang T, Chan YL: Mechanism of angiotensin II action on proximal tubular transport. J Pharmacol Exp Ther 252: 689–695, 1990

    PubMed  CAS  Google Scholar 

  56. Schelling J, Singh H, Marzec R, Linas SL: Angiotensin II-dependent proximal tubule sodium transport is mediated by cAMP modulation of phospholipase C. Am J Physiol 267: C1239–C1245, 1994

    PubMed  CAS  Google Scholar 

  57. Barajas L: Innervation of the renal cortex. Fed Proc 37: 1192–1201, 1978

    PubMed  CAS  Google Scholar 

  58. Bello-Reusse E, Colindres RE, Pastoriza-Munoz E, Müller RA, Gottschalk CW: Effects of acute unilateral renal denervation in the rat. J Clin Invest 56: 208–217, 1975

    Article  Google Scholar 

  59. Pelayo JC, Zeigler MG, Jose PA, Blants RC: Renal denervation in the rat: Analysis of gomerular and proximal tubule function. Am J Physiol 244: F70–F77, 1983

    PubMed  CAS  Google Scholar 

  60. DiBona GF: Neural control of renal tubular sodium reabsorption in the dog. Fed Proc 37: 1214–1217, 1978

    PubMed  CAS  Google Scholar 

  61. Rudd AM, Grippo RS, Arendshorst WJ: Acute renal denervation produces a diuresis and natriuresis in young SHR but not WKY rats. Am J Physiol 251: F655–F661, 1986

    PubMed  CAS  Google Scholar 

  62. Benscath PL, Asztalos B, Bzalay L, Takace L: Renal handling of sodium after chronic sympathectomy in the anesthetized rat. Am J Physiol 236: F513–F518, 1979

    Google Scholar 

  63. Liard JF: Renal denervation delays blood pressure increase in the spontaneously hypertensive rat. Experientia 33: 339–340, 1979

    Article  Google Scholar 

  64. DiBona GF: The function of renal nerves. Rev Physiol Biochem Pharmacol 94: 75–81, 1982

    Article  Google Scholar 

  65. DiBona GF: Neural control of renal function: Role of renal alpha adrenoceptors. J Cardiovasc Pharmacol 7(suppl 8): S12–S23, 1985

    Google Scholar 

  66. Jacobs WR, Chan YL: Evidence for the presence of functional betaadrenoceptor along the proximal tubule of the rat kidney. Biochem Biophys Res Commun 141: 334–339, 1986

    Article  PubMed  CAS  Google Scholar 

  67. Kudo K, Kondo Y, Abe K, Igarashi Y, Tada K, Yoshinaga K: Evidence for presence of functional β-adrenoceptor in rabbit S-2 proximal straight tubules. Am J Physiol 261: F393–F399, 1991

    PubMed  CAS  Google Scholar 

  68. Taniguchi S, Watanabe T, Nakas A, Seki G, Uwatoko S, Suzuki K, Kurokawa K: Distribution of β2 adrenergic receptor mRNA expression along the hamster nephron segments. FEBS Lett 318: 65–70, 1993

    Article  PubMed  CAS  Google Scholar 

  69. Insel PA, Snavely MD, Healy DP, Munzel PA, Potenza CL, Nord EP: Radiologic binding and functional assays demonstrate post-synaptic α2-receptors on proximal tubules of rat and rabbit kidney. J Cardiovasc Pharmacol 7(suppl 8): S1–S8, 1985

    Google Scholar 

  70. Pettinger WA, Unemura S, Smyth DD, Jeffries WB: Renal α2-adrenoceptors and the adenylate cyclase-cAMP system: Biochemical and physiological interactions. Am J Physiol 252: F199–F208, 1987

    PubMed  CAS  Google Scholar 

  71. Sundaresan PR, Barac-Nieto M, Stambo GW, Kelvie SL: Glomerular and tubular α1- and α2 -adrenoceptors in the rat kidney: Distribution in basolateral and brush border membranes of tubular cells. J Cardiovasc Pharmacol 13: 16–24, 1989

    Article  PubMed  CAS  Google Scholar 

  72. Gesek FA, Stradhoy JW: Dual interactions between α2 -adrenoceptor agonists and the proximal Na+-H+ exchanger. Am J Physiol 258: F636–F642, 1990

    PubMed  CAS  Google Scholar 

  73. Jensen RE, Berndt WO: Characterization of adrenergic receptors of proximal tubular basolateral membranes. Life Sci 43: 1473–1478, 1988

    Article  PubMed  CAS  Google Scholar 

  74. Sanchez A, Vidal MJ, Martinez-Sierra R, Saiz J: Ontogeny of renal alpha-1 and alpha-2 adrenoceptors in the spontaneously hypertensive rat. J Pharmacol Exp Ther 237: 972–979, 1986

    PubMed  CAS  Google Scholar 

  75. Baines AD, Ho P: Specific α1-, α2 and β-response to norepinephrine in pyruvate-perfused rat kidneys. Am J Physiol 252: F170–F176, 1987

    PubMed  CAS  Google Scholar 

  76. Wang TT, Lachance S, Delalandre A, Carrière S, Chan JSD: Alphaadrenoceptors and angiotensinogen gene expression in opossum kidney cells. Kidney Int 48: 139–145, 1995

    Article  PubMed  CAS  Google Scholar 

  77. Wang TT, Chen M, Lachance S, Delalandre A, Carrière S, Chan JSD: Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angiotensinogen gene in opossum kidney cells. Kidney Int 46: 703–710, 1994

    Article  PubMed  CAS  Google Scholar 

  78. Koyama H, Goodpasture C, Miller MM, Teplitz RL, Riggs AD: Establishment and characterization of a cell line from the American opossum (Didelphys virginia). In Vitro (Rockville) 14: 239–246, 1978

    CAS  Google Scholar 

  79. Pollock AS, Wamock DG, Strewler GJ: Parathyroid hormone inhibition of Na+-H+ antiporter activity in a cultured renal cell line. Am J Physiol 250: F217–F225, 1986

    PubMed  CAS  Google Scholar 

  80. Murphy TJ, Bylund DB: Characterization of alpha2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244: 457–478, 1988

    Google Scholar 

  81. Cheng L, Liang CT, Precht P, Sacktor B: Alpha2 adrenergic modulation of the parathyroid hormone-inhibition on phosphate uptake in OK cells. Biophys Res Commun 155: 74–82, 1988

    Article  CAS  Google Scholar 

  82. Cheng L, Precht P, Franck D, Liang CT: Dopamine stimulation of cAMP production in cultured opossum kidney cells. Am J Physiol 258: F877–F882, 1990

    PubMed  CAS  Google Scholar 

  83. Chan JSD, Ming M, Nie Z-R, Sikstrom R, Lachance S, Carrière S: Hormonal regulation of expression of the angiotensinogen gene in cultured opossum kidney (OK) proximal tubular cells. J Am Soc Nephrol 2: 1516–1522, 1992

    PubMed  CAS  Google Scholar 

  84. Chan JSD, Chan AHH, Jiang Q, Nie Z-R, Lachance S, Carrière S: Molecular cloning and expression of the rat angiotensinogen gene. Pediatr Nephrol 4: 429–435, 1990

    Article  PubMed  CAS  Google Scholar 

  85. Wang TT, Chen M, Lachance S, Delalandre A, Carrière S, Chan JSD: Isoproterenol and 8-bromo-cyclic adenosine monophosphate stimulate the expression of the angiotensinogen gene in opossum kidney cells. Kidney Int 46: 703–710, 1994

    Article  PubMed  CAS  Google Scholar 

  86. Ming M, Wang TT, Lachance S, Delalandre A, Carrière S, Chan JSD: Expression of the angiotensinogen gene is synergistically stimulated by 8-Bromo-cAMP and dexamethasone in opossum kidney cells. Am J Physiol 268: R105–R111, 1995

    PubMed  CAS  Google Scholar 

  87. Wang TT, Lachance S, Delalandre A, Carrière S, Chan JSD: Alphaadrenoceptors and angiotensinogen gene expression in opossum kidney cells. Kidney Int 48: 139–145, 1995

    Article  PubMed  CAS  Google Scholar 

  88. Wang TT, Lachance S, Delalandre A, Carrière S, Chan JSD: Dopaminergic receptors and angiotensinogen gene expression in opossum kidney cells. Am J Physiol R519–R527, 1996

    Google Scholar 

  89. Wang TT, Wu X-H, Zhang S-L, Chan JSD: The molecular mechanism(s) of action of norepinephrine on the expression of the angiotensinogen gene in opossum kidney cells. Kidney Int 54: 785–795, 1998

    Article  PubMed  CAS  Google Scholar 

  90. Wang TT, Chen X, Wu X-H, Zhang S-L, Chan JSD: Molecular mechanism(s) of action of isoproterenol on the expression of the angiotensinogen gene in opossum kidney proximal tubular cells. Kidney Int 55: 1713–1723, 1999

    Article  PubMed  CAS  Google Scholar 

  91. Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH: Identification of a cyclic-AMP responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83: 6682–6686, 1986

    Article  PubMed  CAS  Google Scholar 

  92. Gonzalez GA, Montminy MR: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680, 1989

    Article  PubMed  CAS  Google Scholar 

  93. Bundle P, Nakajima T, Montminy M: Multiple protein kinase A regulated events are required for transcriptional induction by cAMP. Proc Natl Acad Sci USA 92: 10521–10525, 1995

    Article  Google Scholar 

  94. Yamamoto KR, Gonzalez GA, Biggs WH III, Montminy MR: Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 394–398, 1988

    Article  Google Scholar 

  95. Qian JF, Wang TT, Wu X-H, Wu J, Lachance S, Carrière S, Chan JSD: Angiotensinogen gene expression is stimulated by the cAMP-responsive element binding protein (CREB) in opossum kidney cells. J Am Soc Nephrol 8: 1072–1079, 1997

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, J.S.D., Wang, TT., Zhang, SL., Chen, X., Carrière, S. (2000). Catecholamines and angiotensinogen gene expression in kidney proximal tubular cells. In: Rupp, H., Maisch, B. (eds) Control of Gene Expression by Catecholamines and the Renin-Angiotensin System. Developments in Molecular and Cellular Biochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4351-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4351-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6955-4

  • Online ISBN: 978-1-4615-4351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics