Advertisement

Mechanisms of angiotensin II-induced platelet-derived growth factor gene expression

  • Levon M. Khachigian
  • Yoh Takuwa
  • Tucker Collins
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 33)

Abstract

Angiotensin II induces the expression of platelet-derived growth factorA-chain and B-chain in cultured vascular smooth muscle cells at the level of transcription. The renin-angiotensin system has also been implicated in the increased expression of platelet-derived growth factor in the mechanically-injured artery wall. This review is concerned with recent developments in our understanding of the signaling and transcriptional mechanisms mediating the inducible expression of one vasoconstrictor by another. (Mol Cell Biochem 212: 183–186, 2000)

Key words

angiotensin platelet-derived growth factor transcriptional regulation Egr-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Morgan L, Pipkin FB, Kalsheker N: Angiotensinogen: Molecular biology, biochemistry and physiology. Int J Biochem Cell Biol 28: 1211–1222, 1996PubMedCrossRefGoogle Scholar
  2. 2.
    Inagami T: Recent progress in molecular and cell biological studies of angiotensin receptors. Curr Opin Nephrol Hypertens 4: 47–51, 1995PubMedCrossRefGoogle Scholar
  3. 3.
    Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K: Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30: 358–362, 1997PubMedCrossRefGoogle Scholar
  4. 4.
    Ma J, Nishimura H, Fogo A, Kon V, Inagami T, Ichikawa I: Accelerated fibrosis and collagen deposition develop in the renal interstitium of angiotensin type 2 receptor null mutant mice during ureteral obstruction. Kidney Int 53: 937–944, 1998PubMedCrossRefGoogle Scholar
  5. 5.
    Yamada T, Horiuchi M, Dzau VJ: Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93: 156–160,1996PubMedCrossRefGoogle Scholar
  6. 6.
    Schieffer B, Drexler H, Ling BN, Marrero MB: G protein coupled receptors control vascular smooth muscle cell proliferation via pp60csrc and p2lras. Am J Physiol 272: C2019–C2030, 1997PubMedGoogle Scholar
  7. 7.
    Ihle JN, Thierfelder W, Teglund S, Stravapodis D, Wang D, Feng J, Parganas E: Signaling through the cytokine receptor superfamily. Ann NY Acad Sci 865: 1–9, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Ross R: The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362: 801–809, 1993PubMedCrossRefGoogle Scholar
  9. 9.
    Koyama N, Hart CE, Clowes AW: Different functions of the platelet-derived growth factor-alpha and -beta receptors for the migration and proliferation of cultured baboon smooth muscle cells. Circ Res 75: 682–691, 1994PubMedCrossRefGoogle Scholar
  10. 10.
    Gashler A, Sukhatme V: Early growth response protein I (Egr-1): Prototype of a zinc-finger family of transcription factors. Prog Nucl Acid Res 50: 191–224, 1995CrossRefGoogle Scholar
  11. 11.
    Day FL, Rafty LA, Chesterman CN, Khachigian LM: Angiotensin II (ATII)-inducible platelet-derived growth factor A-chain gene expression is p42/44 extracellular signal-regulated kinase-1/2 and Egr-1 dependent and modulated via the ATII type 1 but not type 2 receptor — induction by ATII antagonized by nitric oxide. J Biol Chem 274: 23726–23733. 1999PubMedCrossRefGoogle Scholar
  12. 12.
    Khachigian LM, Williams AJ, and Collins T: Interplay of Sp 1 and Egr1 in the proximal PDGF-A promoter in cultured vascular endothelial cells. J Biol Chem 270: 27679–27686, 1995PubMedCrossRefGoogle Scholar
  13. 13.
    Dickstein K, Timmermans P, Segal R: Losartan: A selective antagonist II type 1 (AT 1) receptor antagonist for the treatment of heart failure. Exp Opin Invest Drugs 7: 1897–1914, 1998CrossRefGoogle Scholar
  14. 14.
    Sabri A, Levy BI, Poitevan P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel JL: Differential roles ofAT1 and AT2 receptor subtypes in vascular trophic and phenotypic changes in response to stimulation with angiotensin II. Arterioscler Thromb Vasc Biol 17: 257–264, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Kim S, Kawamura M, Wanibuchi H, Ohta K, Hamaguchi A, Omura T, Yulimura T, Miura K, Iwao H: Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation 92: 88–95, 1995PubMedCrossRefGoogle Scholar
  16. 16.
    Chen L, Daum G, Forough R, Clowes M, Walter U, Clowes AW: Over-expression of human endothelial nitric oxide synthase in rat vascular smooth muscle cells and in balloon-injured carotid artery. Circ Res 82: 862–870, 1998PubMedCrossRefGoogle Scholar
  17. 17.
    Seki J, Nishio M, Kato Y, Motoyama Y, Yoshida K: FK409, a new nitric oxide donor, suppresses smooth muscle proliferation in the rat model of balloon angioplasty. Atherosclerosis 117: 97–106, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Janssens S, Flaherty D, Nong Z, Varenne O, van Pelt N, Haustermans C, Zoldelyi P, Gerard R, Collen D: Human endothelial nitric oxide gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 97: 1274–1281, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Cooke JP, Dzau VJ: Nitric oxide synthase: Role in the genesis of vascular disease. Ann Rev Med 48: 489–509, 1997PubMedCrossRefGoogle Scholar
  20. 20.
    Guo K, Andres V, Walsh K: Nitric oxide-induced downregulation of Cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells. Circulation 97: 2066–2072, 1998PubMedCrossRefGoogle Scholar
  21. 21.
    Khachigian LM, Lindner V, Williams AJ, Collins T: Egr- 1 -induced endothelial gene expression: A common theme in vascular injury. Science 271: 1427–1431, 1996PubMedCrossRefGoogle Scholar
  22. 22.
    Khachigian LM, Collins T: Inducible expression of Egr-l-dependent genes: a paradigm of transcriptional activation in vascular endothelium. Circ Res 81: 457–461, 1997PubMedCrossRefGoogle Scholar
  23. 23.
    Khachigian LM, Collins T: Early growth response factor 1: A pleiotropic mediator of inducible gene expression. J Mol Med 76: 613–616, 1998PubMedCrossRefGoogle Scholar
  24. 24.
    Dubey RK, Jackson EK, Luscher TF: Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell: Role of cyclic nucleotides and angiotensin-1 receptors. J Clin Invest 96: 141–149, 1995PubMedCrossRefGoogle Scholar
  25. 25.
    Ferns GAA, Sprugel KH, Seifert RA, Bowen-Pope DF, Kelly JD, Murray M, Raines EW, Ross R: Relative platelet-derived growth factor receptor subunit expression determines cell migration to different dimeric forms of PDGF. Growth Factors 3: 315–324, 1990PubMedCrossRefGoogle Scholar
  26. 26.
    Yu SM, Hung LM, Lin CC: cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation 95: 1269–1277, 1997PubMedCrossRefGoogle Scholar
  27. 27.
    Deguchi J-O, Masatoshi M, Nakaoka T, Collins T, Takuwa Y: Angiotensin II stimulates platelet-derived growth factor-B chain expression in newborn rat vascular smooth muscle cells through Ras, extracellular signal-regulated protein kinase, and c-Jun N-terminal protein kinase mechanisms. Circ Res 85: 565–574, 1999PubMedCrossRefGoogle Scholar
  28. 28.
    Gordon D, Mohai LG, Schwartz SM: Induction of polyploidy in cultures of neonatal rat aortic smooth muscle cells. Circ Res 59: 2268–2274, 1989Google Scholar
  29. 29.
    Majesky MW, Benditt EP, Schwartz SM: Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells. Proc Natl Acad Sci USA 85: 1524–1528, 1988PubMedCrossRefGoogle Scholar
  30. 30.
    Lemire JM, Covin CW, White S, Giachelli CM, Schwartz SM: Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol 144: 1068–1081, 1994PubMedGoogle Scholar
  31. 31.
    Majesky MW, Giachelli CM, Reidy MA, Schwartz SM: Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ Res 71: 759–768, 1992PubMedCrossRefGoogle Scholar
  32. 32.
    Rakugi H, Jacob HJ, Krieger JE, Ingelfinger JR, Pratt RE: Vascular injury induces angiotensinogen gene expression in the media and neointima. Circulation 93: 283–287, 1993CrossRefGoogle Scholar
  33. 33.
    Viswanathan M, Strimberg C, Seltzer A, Saavedra JM: Balloon angioplasty enhances the expression of angiotensin II AT1 receptors in the neointima of rat aorta. J Clin Invest 90: 1707–1712, 1992PubMedCrossRefGoogle Scholar
  34. 34.
    Abe J, Deguchi J, Mastsumoto T, Takuwa N, Noda M, Olmo M, Makuchi M, Kurokawa K, Takuwa Y: Stimulated activation of platelet-derived growth factor receptor in vivo in balloon-injured arteries: A link between angiotensin II and intimal thickening. Circulation 96: 1906–1913,1997PubMedCrossRefGoogle Scholar
  35. 35.
    Wong J, Rauhoft C, Dilley RJ, Agrotis A, Jennings GL, A B: Angiotensin-converting enzyme inhibition abolishes medial smooth muscle PDGF-AB biosynthesis and attenuates cell proliferation in injured carotid arteries: relationships to neointima formation. Circulation 96: 1631–1640, 1997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Levon M. Khachigian
    • 1
    • 2
    • 5
  • Yoh Takuwa
    • 3
  • Tucker Collins
    • 4
  1. 1.Centre for Thrombosis and Vascular ResearchThe University of New South WalesSydneyAustralia
  2. 2.Department of HaematologyPrince of Wales HospitalSydneyAustralia
  3. 3.Department of PhysiologyKanazawa University School of MedicineKanazawaJapan
  4. 4.Vascular Research Division, Department of PathologyBrigham and Women’s Hospital & Harvard Medical SchoolBostonUSA
  5. 5.Centre for Thrombosis and Vascular Research, School of PathologyThe University of New South WalesSydneyAustralia

Personalised recommendations