Functional cross-talk between the cyclic AMP and Jak/STAT signaling pathways in vascular smooth muscle cells

  • Sylvain Meloche
  • Stéphane Pelletier
  • Marc J. Servant
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 33)


Angiotensin II (Ang II), the primary effector of the renin-angiotensin system, is a multifunctional hormone that plays an important role in vascular function. In addition to its classical vasoconstrictor action, more recent studies demonstrated thatAng II stimulates the growth of a number of cell types, including vascular smooth muscle cells (SMC) (reviewed in [1–3]). In vivo studies have shown that chronic infusion of Ang II leads to the development of vascular hypertrophy in rats, whereas administration of angiotensin-converting enzyme (ACE) inhibitors or Ang II receptor antagonists prevents or regresses vascular hypertrophy in models of genetic and experimental hypertension [4]. Consistent with in vivo data, several laboratories have shown that Ang II stimulates protein synthesis and induces cellular hypertrophy, but not cell proliferation, in cultured aortic SMC [5–9]. Ang II also induces directed migration (chemotaxis) of vascular SMC [10, 11], although its effect is less prominent than that of platelet-derived growth factor (PDGF). The cellular mechanisms underlying these diverse actions of Ang II are not clearly understood but are likely to involve the activation of distinct signaling pathways. (Mol Cell Biochem 212: 99–109, 2000)

Key words

cell growth angiotensin II signal transduction cyclic AMP protein kinase A Janus kinases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schelling P, Fischer H, Ganten D: Angiotensin and cell growth: A link to cardiovascular hypertrophy? J Hypertens 9: 3–15, 1991PubMedGoogle Scholar
  2. 2.
    Rosendorff C: The renin-angiotensin system and vascular hypertrophy. J Am Coll Cardiol 28: 803–812, 1996PubMedCrossRefGoogle Scholar
  3. 3.
    Pratt RE: Angiotensin II and the control of cardiovascular structure. J Am Soc Nephrol 10(suppl 11): S120–S128,1999PubMedGoogle Scholar
  4. 4.
    Metsärinne KP, Stoll M, Falkenhahn M, Gohlke P, Unger T: Inhibiting the effects of angiotensin on cardiovascular hypertrophy. In: J.M. Saavedra, P.B.M.W.M. Timmermans (eds). Angiotensin Receptors. Plenum Press, New York, 1994, pp 235–253CrossRefGoogle Scholar
  5. 5.
    Geisterfer AAT, Peach MJ, Owens GK: Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749–756, 1988PubMedCrossRefGoogle Scholar
  6. 6.
    Berk BC, Vekshtein V, Gordon HM, Tsuda T: Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13: 305–314, 1989PubMedCrossRefGoogle Scholar
  7. 7.
    Itoh H, Pratt RE, Dzau VJ: Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697, 1990PubMedCrossRefGoogle Scholar
  8. 8.
    Grainger DJ, Witchell CM, Weissberg PL, Metcalfe JC: Mitogens for adult rat aortic vascular smooth muscle cells in serum-free primary culture. Cardiovasc Res 28: 1238–1242, 1994PubMedCrossRefGoogle Scholar
  9. 9.
    Giasson E, Meloche S: Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 270: 5225–5231, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Dubey RK, Jackson EK, Luscher TF: Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin 1 receptors. J Clin Invest 96: 141–149, 1995PubMedCrossRefGoogle Scholar
  11. 11.
    Xi XP, Graf K, Goetze S, Fleck E, Hsueh WA, Law RE: Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler Thromb Vase Biol 19: 73–82, 1999CrossRefGoogle Scholar
  12. 12.
    Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45: 205–251, 1993PubMedGoogle Scholar
  13. 13.
    Smith RD, Chiu AT, Wong PC, Herblin WF, Timmermans PBMWM: Pharmacology of nonpeptide angiotensin II receptor antagonists. Annu Rev Pharmacol Toxicol 32: 135–165, 1992PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks DP, Ruffolo RRJ. Functions mediated by peripheral angiotensin II receptors. In: R.R. Ruffolo Jr (ed). Angiotensin II Receptors Volume 1: Molecular Biology, Biochemistry, Pharmacology, and Clinical Perspectives, 1st edn. CRC Press, Boca Raton, 1994, pp 71–102Google Scholar
  15. 15.
    Horiuchi M, Akishita M, Dzau VJ: Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33: 613–621,1999PubMedCrossRefGoogle Scholar
  16. 16.
    de Gasparo M, Siragy HM: The AT2 receptor: Fact, fancy and fantasy. Reg Pep 81: 11–24, 1999CrossRefGoogle Scholar
  17. 17.
    Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE: Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351: 233–236, 1991PubMedCrossRefGoogle Scholar
  18. 18.
    Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T: Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351: 230–233, 1991PubMedCrossRefGoogle Scholar
  19. 19.
    Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T: Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268: 24543–24546, 1993PubMedGoogle Scholar
  20. 20.
    Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ: Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268: 24539–24542,1993PubMedGoogle Scholar
  21. 21.
    Catt KJ, Sandberg K, Balla T. Angiotensin II receptors and signal transduction mechanisms. In: M.K. Raizada, M.I. Phillips, C. Sumners (eds). Cellular and Molecular Biology of the Renin-Angiotensin Systern, 1st edn. CRC Press, Boca Raton, 1993, pp 307–356.Google Scholar
  22. 22.
    Griendling KK, Ushio-Fukai M, Lassègue B, Alexander RW: Angiotensin II signaling in vascular smooth muscle: New concepts. Hypertension 29: 366–373, 1997PubMedCrossRefGoogle Scholar
  23. 23.
    Schelling JR, Nkemere N, Konieczkowski M, Martin KA, Dubyak GR: Angiotensin II activates the beta 1 isoform of phospholipase C in vascular smooth muscle cells. Am J Physiol 272: C1558–01566, 1997PubMedGoogle Scholar
  24. 24.
    Ushio-Fukai M, Griendling KK, Akers M, Lyons PR, Alexander RW: Temporal dispersion of activation of phospholipase C-beta 1 and - gamma isoforms by angiotensin II in vascular smooth muscle cells. Role of alphaq/I1, alpha 12, and beta gamma G protein subunits. J Biol Chem 273: 19772–19777, 1998PubMedCrossRefGoogle Scholar
  25. 25.
    Exton JH: Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56: 349–369, 1994PubMedCrossRefGoogle Scholar
  26. 26.
    Saward L, Zahradka P: Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81: 249–257, 1997PubMedCrossRefGoogle Scholar
  27. 27.
    Edwards RM, Ruffolo RR Jr: Angiotensin II receptor signal transduction mechanisms. In: R.R. Ruffolo Jr (ed). Angiotensin II Receptors Volume 1: Molecular Biology, Biochemistry, Pharmacology, and Clinical Perspectives, 1st edn. CRC Press, Boca Raton, 1994, pp 5370.Google Scholar
  28. 28.
    Lassègue B, Alexander RW, Clark M: Phosphatidylchonine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth muscle cells. Biochem J 292: 509–517, 1993PubMedGoogle Scholar
  29. 29.
    Griendling KK, Minieri CA, 011erenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141–1148, 1994PubMedCrossRefGoogle Scholar
  30. 30.
    Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK: Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32: 488–495, 1998PubMedCrossRefGoogle Scholar
  31. 31.
    Meloche S, Landry J, Huot J, Houle F, Marceau F, Giasson E: The p38 mitogen-activated protein kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle. Am J Physiol (in press)Google Scholar
  32. 32.
    Lang U, Vallotton MB: Effects of angiotensin II and of phorbol ester on protein kinase C activity and on prostacyclin production in cultured rat aortic smooth-muscle cells. Biochem J 259: 477–483, 1989PubMedGoogle Scholar
  33. 33.
    Tsuda T, Alexander RW: Angiotensin II stimulates phosphorylation of nuclear lamins via a protein kinase C-dependent mechanism in cultured vascular smooth muscle cells. J Biol Chem 265: 1165–1170, 1990PubMedGoogle Scholar
  34. 34.
    Damron DS, Nadim HS, Hong SJ, Darvish A, Murray PA: Intracellular translocation of PKC isoforms in canine pulmonary artery smooth muscle cells byANG II. Am J Physiol 274: L278–L288,1998PubMedGoogle Scholar
  35. 35.
    Duff JL, Berk BC, Corson MA: Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 188: 257–264, 1992PubMedCrossRefGoogle Scholar
  36. 36.
    Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Yokoyama M: Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71: 620–630, 1992PubMedCrossRefGoogle Scholar
  37. 37.
    Servant MJ, Giasson E, Meloche S: Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem 271: 16047–16052, 1996PubMedCrossRefGoogle Scholar
  38. 38.
    Kusuhara M, Takahashi E, Peterson TE, Abe J, Ishida M, Han J, Ulevitch R, Berk BC: p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: Effects on Na+/ H+ exchange and ERK1/2. Cire Res 83: 824–831, 1998CrossRefGoogle Scholar
  39. 39.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK: p38 Mitogenactivated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273: 15022–15029, 1998PubMedCrossRefGoogle Scholar
  40. 40.
    Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK: Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274: 22699–22704, 1999PubMedCrossRefGoogle Scholar
  41. 41.
    Abraham ST, Benscoter H, Schworer CM, Singer HA: In situ Ca2+ dependence for activation of Ca2+/calmodulin-dependent protein kinase II in vascular smooth muscle cells. J Biol Chem 271: 2506–2513, 1996PubMedCrossRefGoogle Scholar
  42. 42.
    Voisin L, Larose L, Meloche S: Angiotensin II stimulates serine phosphorylation of the adaptor protein nck: Physical association with the serine/threonine kinases pakl and casein kinase I. Biochem J 341: 217 223, 1999Google Scholar
  43. 43.
    Berk BC, Corson MA: Angiotensin II signal transduction in vascular smooth muscle: Role of tyrosine kinases. Circ Res 80: 607–616, 1997PubMedCrossRefGoogle Scholar
  44. 44.
    Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212, 1990PubMedCrossRefGoogle Scholar
  45. 45.
    Taniguchi T: Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251--255, 1995PubMedCrossRefGoogle Scholar
  46. 46.
    Golden A, Brugge JS: Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc Natl Acad Sci USA 86: 901–905, 1989PubMedCrossRefGoogle Scholar
  47. 47.
    Force T, Kyriakis JM, Avruch J, Bonventre JV: Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J Biol Chem 266: 6650–6656, 1991PubMedGoogle Scholar
  48. 48.
    Leeb-Lundberg LM, Song XH: Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J Biol Chem 266: 7746–7749, 1991PubMedGoogle Scholar
  49. 49.
    Zachary I, Gil J, Lehmann W, Sinnett-Smith J, Rozengurt E: Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl Acad Sci USA 88: 4577–4581, 1991PubMedCrossRefGoogle Scholar
  50. 50.
    Hordijk PL, Verlaan I, van Corven EJ, Moolenaar WH: Protein tyrosine phosphorylation induced by lysophosphatidic acid in Rat-1 fibroblasts. Evidence that phosphorylation of map kinase is mediated by the Gi-p2lras pathway. J Biol Chem 269: 645–651, 1994PubMedGoogle Scholar
  51. 51.
    Huckle WR, Prokop CA, Dy RC, Herman B, Earp S: Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 10: 6290–6298, 1990PubMedGoogle Scholar
  52. 52.
    Tsuda T, Kawahara Y, Shii K, Koide M, Ishida Y, Yokoyama M: Vasoconstrictor-induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett 285: 44–48, 1991PubMedCrossRefGoogle Scholar
  53. 53.
    Molloy CJ, Taylor DS, Weber H: Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268: 7338–7345, 1993PubMedGoogle Scholar
  54. 54.
    Leduc I, Haddad P, Giasson E, Meloche S: Involvement of a tyrosine kinase pathway in the growth-promoting effects of angiotensin II on aortic smooth muscle cells. Mol Pharmacol 48: 582–592, 1995PubMedGoogle Scholar
  55. 55.
    Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM: Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 269: 19626–19632, 1994PubMedGoogle Scholar
  56. 56.
    Weiss RH, Niccittelli R: Inhibition of tyrosine phosphorylation prevents thrombin-induced mitogenesis, but not intracellular free calcium release, in vascular smooth muscle cells. J Biol Chem 267: 5608–5613, 1992PubMedGoogle Scholar
  57. 57.
    Simonson MS, Herman WH: Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1. J Biol Chem 268: 9347–9357, 1993PubMedGoogle Scholar
  58. 58.
    Seckl M, Rozengurt E: Tyrphostin inhibits bombesin stimulation of tyrosine phosphorylation, c-fos expression, and DNA synthesis in Swiss 3T3 cells. J Biol Chem 268: 9548–9554, 1993PubMedGoogle Scholar
  59. 59.
    Hollenberg MD: Tyrosine kinase-mediated signal transduction pathways and the actions of polypeptide growth factors and G-protein-coupled agonists in smooth muscle. Mol Cell Biochem 149/150: 77–85,1995PubMedCrossRefGoogle Scholar
  60. 60.
    Leduc I, Meloche S: Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J Biol Chem 270: 4401–4404, 1995PubMedCrossRefGoogle Scholar
  61. 61.
    Polte TR, Naftilan AJ, Hanks SK: Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem 55: 106–119, 1994PubMedCrossRefGoogle Scholar
  62. 62.
    Okuda M, Kawahara Y, Nakayama I, Hoshijima M, Yokoyama M: Angiotensin II transduces its signal to focal adhesions via angiotensin II type 1 receptors in vascular smooth muscle cells. FEBS Lett 368: 343–347, 1995PubMedCrossRefGoogle Scholar
  63. 63.
    Giasson E, Servant MJ, Meloche S: Cyclic AMP-mediated inhibition of angiotensin II-induced protein synthesis is associated with suppression of tyrosine phosphorylation signaling in vascular smooth muscle cells. J Biol Chem 272: 26879–26886, 1997PubMedCrossRefGoogle Scholar
  64. 64.
    Linseman DA, Benjamin CW, Jones DA: Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 270: 12563–12568, 1995PubMedCrossRefGoogle Scholar
  65. 65.
    Manero MB, Paxton WG, Duff JL, Berk BC, Bernstein KE: Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma 1 in vascular smooth muscle cells. J Biol Chem 269: 10935–10939, 1994Google Scholar
  66. 66.
    Ishida M, Manero MB, Schieffer B, Ishida T, Berstein KE, Berk BC: Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res 77: 1053–1059, 1995PubMedCrossRefGoogle Scholar
  67. 67.
    Manero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE: Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375: 247–250, 1995CrossRefGoogle Scholar
  68. 68.
    Ali MS, Schieffer B, Delafontaine P, Bernstein KE, Ling BN, Manero MB: Angiotensin II stimulates tyrosine phosphorylation and activation of insulin receptor substrate 1 and protein-tyrosine phosphatase 1D in vascular smooth muscle cells. J Biol Chem 272: 12373–12379, 1997PubMedCrossRefGoogle Scholar
  69. 69.
    Brinson AE, Harding T, Diliberto PA, He Y, Li X, Hunter D, Herman B, Earp HS, Graves LM: Regulation of a calcium-dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet-derived growth factor. Dependence on calcium and the actin cytoskeleton. J Biol Chem 273: 1711–1718, 1998PubMedCrossRefGoogle Scholar
  70. 70.
    Sayeski PP, Ali MS, Harp JB, Manero MB, Bernstein KE: Phosphorylation of p130Cas by angiotensin II is dependent on c-Src, intracellular Ca2+ and protein kinase C. Circ Res 82: 1279–1288, 1998PubMedCrossRefGoogle Scholar
  71. 71.
    Takahashi T, Kawahara Y, Taniguchi T, Yokoyama M: Tyrosine phosphorylation and association of p130Cas and c-Crk II by ANG II in vascular smooth muscle cells. Am J Physiol 274: H1059–H1065, 1998PubMedGoogle Scholar
  72. 72.
    Ishida T, Ishida M, Suero J, Takahashi M, Berk BC: Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest 103: 789–797, 1999PubMedCrossRefGoogle Scholar
  73. 73.
    Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T: Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogenactivated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273: 8890–8896, 1998PubMedCrossRefGoogle Scholar
  74. 74.
    Daub H, Weiss FU, Wallasch C, Ullrich A: Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557–560, 1996PubMedCrossRefGoogle Scholar
  75. 75.
    Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM: Angiotensin II stimulates sis-inducing factor-like DNA binding activity. J Biol Chem 269: 31443–31449, 1994PubMedGoogle Scholar
  76. 76.
    Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE: Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem 272: 23382–23388, 1997PubMedCrossRefGoogle Scholar
  77. 77.
    Bhat GJ, Baker KM: Angiotensin II stimulates rapid serine phosphorylation of transcription factor Stat3. Mol Cell Biochem 170: 171176, 1997Google Scholar
  78. 78.
    Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN: Role of Janus kinase/signal transducer and activator of transcription and mitogenactivated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 272: 24684–24690, 1997PubMedCrossRefGoogle Scholar
  79. 79.
    McWhinney CD, Hunt RA, Conrad KM, Dostal DE, Baker KM: The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol 29: 2513–2524, 1997PubMedCrossRefGoogle Scholar
  80. 80.
    Pan J, Fukuda K, Kodama H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S: Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81: 611–617, 1997PubMedCrossRefGoogle Scholar
  81. 81.
    Kodama H, Fukuda K, Pan J, Makino S, Sano M, Takahashi T, Hori S, Ogawa S: Biphasic activation of the JAK/STAT pathway by angiotensin II in rat cardiomyocytes. Circ Res 82: 244–250, 1998PubMedCrossRefGoogle Scholar
  82. 82.
    Ihle JN: Cytokine receptor signalling. Nature 377: 591–594, 1995PubMedCrossRefGoogle Scholar
  83. 83.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD: How cells respond to interferons. Annu Rev Biochem 67: 227–264, 1998PubMedCrossRefGoogle Scholar
  84. 84.
    Aringer M, Cheng A, Nelson JW, Chen M, Sudayshan C, Zhou YJ, O’Shea JJ: Janus kinases and their role in growth and disease. Life Sci 64: 2173–2186, 1999PubMedCrossRefGoogle Scholar
  85. 85.
    Yeh TC, Pe1legrirü S: The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell Mol Life Sci 55: 1523–1534, 1999PubMedCrossRefGoogle Scholar
  86. 86.
    Darnell JE Jr.: STATs and gene regulation. Science 277: 1630–1635, 1997PubMedCrossRefGoogle Scholar
  87. 87.
    Leaman DW, Leung S, Li X, Stark GR: Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J 10: 1578–1588, 1996PubMedGoogle Scholar
  88. 88.
    Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T: Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3: 771–782, 1995PubMedCrossRefGoogle Scholar
  89. 89.
    Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN: Defective lymphoid development in mice lacking Jak3. Science 270: 800–802, 1995PubMedCrossRefGoogle Scholar
  90. 90.
    Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ: Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270: 794–797, 1995PubMedCrossRefGoogle Scholar
  91. 91.
    Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93: 397–409, 1998PubMedCrossRefGoogle Scholar
  92. 92.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN: Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395, 1998PubMedCrossRefGoogle Scholar
  93. 93.
    Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM Jr, Schreiber RD: Disruption of the Jakl gene demonstrates obligatory and non-redundant roles of the Jaks in cytokine-induced biologic responses. Cell 93: 373–383, 1998PubMedCrossRefGoogle Scholar
  94. 94.
    Taylor SS, Buechler JA, Yonemoto W: cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59: 971–1005, 1990PubMedCrossRefGoogle Scholar
  95. 95.
    Houslay MD, Milligan G: Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci 22: 217–224, 1997Google Scholar
  96. 96.
    Pastan IH, Johnson GS, Anderson WB: Role of cyclic nucleotides in growth control. Annu Rev Biochem: 491–523, 1975Google Scholar
  97. 97.
    Boynton AL, Whitfield JF. The role of cyclic AMP in cell proliferation: A critical assessment of the evidence. In: P. Greengard, G.A. Robison (eds). Advances in Cyclic Nucleotide Research. Raven Press, New York, 1983, pp 193–294Google Scholar
  98. 98.
    Dumont JE, Jauniaux JC, Roger PP: The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14: 67–71, 1989PubMedCrossRefGoogle Scholar
  99. 99.
    Assender JW, Southgate KM, Hallett MB, Newby AC: Inhibition of proliferation, but not of Ca2+ mobilization, by cyclic AMP and GMP in rabbit aortic smooth-muscle cells. Biochem J 288: 527–532, 1992PubMedGoogle Scholar
  100. 100.
    Indolfi C, Avvedimento EV, Di Lorenzo E, Esposito G, Rapacciulo A, Giuliano P, Grieco D, Cavuto L, Stingone AM, Ciullo I, Condorelli G, Chiariello M: Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nat Med 3: 775–779, 1997PubMedCrossRefGoogle Scholar
  101. 101.
    Burgering BMT, Pronk GJ, van Weeren PC, Charding P, Bos JL: cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 12: 4211–4220, 1993PubMedGoogle Scholar
  102. 102.
    Cook SJ, McCormick F: Inhibition by cAMP of Ras-dependent activation of Raf. Science 262: 1069–1072, 1993PubMedCrossRefGoogle Scholar
  103. 103.
    Graves LM, Bornfeldt KE, Raines EW, Potts BC, MacDonald SG, Ross R, Krebs EG: Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA 90: 10300–10304,1993PubMedCrossRefGoogle Scholar
  104. 104.
    Sevetson BR, Kong X, Lawrence JC Jr.: Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 90: 10305–10309, 1993PubMedCrossRefGoogle Scholar
  105. 105.
    Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW: Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3’, 5’-monophosphate. Science 262: 1065–1069, 1993PubMedCrossRefGoogle Scholar
  106. 106.
    Kahan C, Seuwen K, Meloche S, Pouyssegur J: Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem 267: 13369–13375, 1992PubMedGoogle Scholar
  107. 107.
    Monfar M, Lemon KP, Grammer TC, Cheatham L, Chung J, Vlahos CJ, Blenis J: Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol Cell Biol 15: 326–337, 1995PubMedGoogle Scholar
  108. 108.
    Rao GN, Runge MS: Cyclic AMP inhibition of thrombin-induced growth in vascular smooth muscle cells correlates with decreased JNK1 activity and c-Jun expression. J Biol Chem 271: 20805–20810, 1996PubMedCrossRefGoogle Scholar
  109. 109.
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr.: cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 92: 7222–7226, 1995PubMedCrossRefGoogle Scholar
  110. 110.
    Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ: Cyclic AMP-induced GI phase arrest mediated by an inhibitor (p27Kipl) of cyclindependent kinase 4 activation. Cell 79: 487–496, 1994PubMedCrossRefGoogle Scholar
  111. 111.
    L’Allemain G, Lavoie JN, Rivard N, Baldin V, Pouyssegur J: Cyclin D1 expression is a major target of the cAMP-induced inhibition of cell cycle entry in fibroblasts. Oncogene 14: 1981–1990, 1997PubMedCrossRefGoogle Scholar
  112. 112.
    Trepel JB, Colamonici OR, Kelly K, Schwab G, Watt RA, Sausville EA, Jaffe ES, Neckers LM: Transcriptional inactivation of c-myc and the transferin receptor in dibutyryl cyclic AMP-treated HL-60 cells. Mol Cell Biol 7: 2644–2648, 1987PubMedGoogle Scholar
  113. 113.
    Heldin NR, Paulsson Y, Forsberg K, Heldin CH, Westermark B: Induction of cyclic AMP synthesis by forskolin is followed by a reduction in the expression of c-myc messenger RNA and inhibition of ‘H-thymidine incorporation in human fibroblasts. J Cell Physiol 138: 17–23, 1989PubMedCrossRefGoogle Scholar
  114. 114.
    Rock CO, Cleveland JL, Jackowski S: Macrophage growth arrest by cyclic AMP defines a distinct checkpoint in the mid-G, stage of the cell cycle and overrides constitutive c-myc expression. Mol Cell Biol 12: 2351–2358, 1992PubMedGoogle Scholar
  115. 115.
    Wolf G, Killen PD, Neilson EG: Intracellular signaling of transcription and secretion of type IV collagen after angiotensin II-induced cellular hypertrophy in cultured proximal tubular cells. Cell Reg 2: 219–227, 1991Google Scholar
  116. 116.
    Takahashi T, Kawahara Y, Okuda M, Yokoyama M: Increasing cAMP antagonizes hypertrophic response to angiotensin II without affecting Ras and MAP kinase activation in vascular smooth muscle cells. FEBS Lett 397: 89–92, 1996PubMedCrossRefGoogle Scholar
  117. 117.
    Randall VA, MacLennan SJ, Martin GR, Wilson VG: The effect of forskolin on 5-HT1-like and angiotensin II-induced vasoconstriction and cyclic AMP content of the rabbit isolated femoral artery. Br J Pharmacol 118: 627–634, 1996PubMedCrossRefGoogle Scholar
  118. 118.
    Sonenberg N, Gingras AC: The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10: 268–275, 1998PubMedCrossRefGoogle Scholar
  119. 119.
    Jefferies HBJ, Thomas G. Ribosomal protein S6 phosphorylation and signal transduction. In: J.W.B. Hershey, M.B. Mathews, N. Sonenberg (eds). Translational Control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996, pp 389–409.Google Scholar
  120. 120.
    Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J 16: 3693–3704, 1997PubMedCrossRefGoogle Scholar
  121. 121.
    Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G: Phosphorylation and activation of p70s6k by PDK1. Science 279: 707–710, 1998PubMedCrossRefGoogle Scholar
  122. 122.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 7: 261–269, 1997PubMedCrossRefGoogle Scholar
  123. 123.
    Dumler I, Weis A, Mayboroda OA, Maasch C, Jerke U, Haller H, Gulba DC: The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 273: 315–321, 1998PubMedCrossRefGoogle Scholar
  124. 124.
    Conway G, Margoliath A, Wong-Madden S, Roberts RJ, Gilbert W: Jakl kinase is required for cell migrations and anterior specification in zebrafish embryos. Proc Natl Acad Sci USA 94: 3082–3087, 1997PubMedCrossRefGoogle Scholar
  125. 125.
    Sengupta TK, Schmitt EM, Ivashkiv LB: Inhibition of cytokines and JAK-STAT activation by distinct signaling pathways. Proc Natl Acad Sci USA 93: 9499–9504, 1996PubMedCrossRefGoogle Scholar
  126. 126.
    David M, Petricoin E III, Lamer AC: Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J Biol Chem 271: 4585–4588, 1996PubMedCrossRefGoogle Scholar
  127. 127.
    Salahpour A, Angers S, Bouvier M: Functional significance of ohgomerization of G protein-coupled receptors. Trends Endocr Metab (in press)Google Scholar
  128. 128.
    Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF: Specific recruitment of SH-PTP 1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738, 1995PubMedCrossRefGoogle Scholar
  129. 129.
    Yetter A, Uddin S, Krolewski JJ, Jiao H, Yi T, Platanias LC: Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J Biol Chem 270: 18179–18182, 1995PubMedCrossRefGoogle Scholar
  130. 130.
    Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T: Direct association with and dephosphorylation of Jak2 kinase by the SH2domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16: 6985–6992, 1996PubMedGoogle Scholar
  131. 131.
    You M, Yu DH, Feng GS: Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 19: 2416–2424, 1999PubMedGoogle Scholar
  132. 132.
    Petricoin E III, David M, Igarashi K, Benjamin C, Ling L, Goelz S, Finbloom DS, Lamer AC: Inhibition of alpha interferon but not gamma interferon signal transduction by phorbol esters is mediated by a tyrosine phosphatase. Mol Cell Biol 16: 1419–1424, 1996PubMedGoogle Scholar
  133. 133.
    Kolenko V, Rayman P, Roy B, Cathcart MK, O’Shea J, Tubbs R, Rybicki L, Bukowski R, Finke J: Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. Blood 93: 2308–2318, 1999PubMedGoogle Scholar
  134. 134.
    Geraci MW, Gao B, Shepherd DC, Moore MD, Westcott JY, Fagan KA, Alger LA, Tuder RM, Voelkel NF: Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J Clin Invest 103: 1509–1515, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sylvain Meloche
    • 1
    • 3
  • Stéphane Pelletier
    • 1
  • Marc J. Servant
    • 1
    • 2
  1. 1.Research Centre, Centre hospitalier de l’Université de Montréal and Department of PharmacologyUniversité de MontréalMontrealCanada
  2. 2.Lady Davis Institute for Medical ResearchSir Mortimer B. Davis Jewish General HospitalMontrealCanada
  3. 3.Research CentreCentre hospitalier de l’Université de Montréal, Hôtel-Dieu CampusMontrealCanada

Personalised recommendations