Skip to main content

Fuzzy Set Theory

  • Chapter
  • 164 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 570))

Abstract

This chapter presents the fundamental ideas behind fuzzy set theory. It begins with a review of traditional set theory (commonly referred to as crisp or classical set theory in the fuzzy set literature) and uses this as a backdrop, against which fuzzy sets and a variety of operations on fuzzy sets are introduced. Various justifications and interpretations of fuzzy sets as a form of knowledge granulation are subsequently presented. Different families of fuzzy set aggregation operators are then examined. The original notion of a fuzzy set can be generalised in a number of ways leading to more expressive forms of knowledge representation; the latter part of this chapter presents some of these generalisations, where the original idea of a fuzzy set is generalised in terms of its dimensionality, type of membership value and element characterisation. Finally, fuzzy set elicitation is briefly covered for completeness (Chapter 9 gives more detailed coverage of this topic).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Astanassov, K. T. (1986). “Intuitionistic fuzzy sets”, Fuzzy sets and systems, 20:87–96.

    Article  MathSciNet  Google Scholar 

  • Baldwin, J. F. (1991). “A Theory of Mass Assignments for Artificial Intelligence”, In 1JCAI ′91 Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in Artificial Intelligence, A. L. Ralescu, ed., 22–34.

    Google Scholar 

  • Baldwin, J. F., and Lawry, J. (2000). “A fuzzy c-means algorithm for prototype induction.” In the proceedings of IPMU, Madrid, To appear.

    Google Scholar 

  • Baldwin, J. F., Martin, T. P., and Pilsworth, B. W. (1995). FRIL — Fuzzy and Evidential Reasoning in A.I. Research Studies Press (Wiley Inc.), ISBN 086380159 5.

    Google Scholar 

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G. (1997a). “Fuzzy logic methods in vision recognition.” In the proceedings of Fuzzy Logic: Applications and Future Directions Workshop, London, UK, 300-316.

    Google Scholar 

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G. (1997b). “Modelling with words using Cartesian granule features.” In the proceedings of FUZZ-IEEE, Barcelona, Spain, 1295-1300.

    Google Scholar 

  • Bonissone, P. P., and Decker, K. S. (1986). “Selecting uncertainty calculi and granularity: An experiment in trading-off precision and complexity”, In Uncertainty in Artificial Intelligence, L. N. Kanal and J. F. Lemer, eds., North-Holland, Amsterdam, 217–247.

    Google Scholar 

  • Borel, E. (1950). Probabilite et certitude. Press universite de France, Paris.

    Google Scholar 

  • Bruner, J. S., Goodnow, J. J., and Austin, G. A. (1956). A Study of Thinking. Wiley, New York.

    Google Scholar 

  • Dubois, D., and Prade, H. (1983). “Unfair coins and necessary measures: towards a possibilistic interpretation of histograms”, Fuzzy sets and systems, 10:15–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D., and Prade, H. (1988). An approach to computerised processing of uncertainty. Plenum Press, New York.

    Google Scholar 

  • Gaines, B. R. (1977). “Foundations of Fuzzy Reasoning”, In Fuzzy Automata and Decision Processes, M. Gupta, G. Saridis, and B. R. Gaines, eds., Elsevier, North-Holland, 19–75.

    Google Scholar 

  • Gaines, B. R. (1978). “Fuzzy and Probability Uncertainty Logics”, Journal of Information and Control, 38:154–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamacher, H. (1978). Uber logiishe Aggregation nicht-binair expliziter Entscheidungskriterien. Main, Frankfurt.

    Google Scholar 

  • Hirota, K. (1981). “Concepts of probabilistic sets”, Fuzzy sets and systems, 5:31–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Klir, G. J., and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall, New Jersey.

    MATH  Google Scholar 

  • Klir, G. J., and Yuan, B. (1998). “Operations on Fuzzy Sets”, In Handbook of Fuzzy Computation, E. H. Ruspini, P. P. Bonissone, and W. Pedrycz, eds., Institute of Physics Publishing Ltd., Bristol, UK, B2.2:1–15.

    Google Scholar 

  • Klir, K. (1990). “A principle of uncertainty and information invariance”, International journal of general systems, 17(2, 3):249–275.

    Article  MATH  Google Scholar 

  • Mizumoto, M., and Tanaka, K. (1976). “Some properties of fuzzy sets of type 2”, Information and control, 48(1):30–48.

    Article  MathSciNet  Google Scholar 

  • Negoita, C. V., and Ralescu, D. (1975). “Representation theorems for fuzzy concepts”, Kybernetics, 4(3):169–174.

    Article  MATH  Google Scholar 

  • Ralescu, A. L., ed. (1995a). “Applied Research in Fuzzy Technology”, Kluwer Academic Publishers, New York.

    MATH  Google Scholar 

  • Ralescu, D. (1995b). “Cardinality, quantifiers, and the aggregation of fuzzy criteria”, Fuzzy sets and systems, 69:355–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruspini, E. H., Bonissone, P. P., and Pedrycz, W., eds. (1998). “Handbook of Fuzzy Computation”, Institute of Physics Publishing Ltd., Bristol, UK.

    MATH  Google Scholar 

  • Russell, B. (1923). “Vagueness”, Australasian journal of psychology and philosophy, 1:84–92.

    Article  Google Scholar 

  • Schweizer, B., and Sklar, A. (1961). “Associative functions and statistical triangle inequalities”, Publ. Math. Debrecen, 8:169–186.

    MathSciNet  MATH  Google Scholar 

  • Schweizer, B., and Sklar, A. (1963). “Associative functions and abstract semigroups”, Publ. Math. Debrecen, 10:69–81.

    MathSciNet  Google Scholar 

  • Shanahan, J. G. (1998). “Cartesian Granule Features: Knowledge Discovery of Additive Models for Classification and Prediction”, PhD Thesis, Dept. of Engineering Mathematics, University of Bristol, Bristol, UK.

    Google Scholar 

  • Sudkamp, T. (1992). “On probability-possibility transformation”, Fuzzy Sets and Systems, 51:73–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugeno, M., and Yasukawa, T. (1993). “A Fuzzy Logic Based Approach to Qualitative Modelling”, IEEE Trans on Fuzzy Systems, 1(1): 7–31.

    Article  Google Scholar 

  • Terano, T., Asai, K., and Sugeno, M. (1992). Applied fuzzy systems. Academic Press, New York.

    Google Scholar 

  • Yager, R. (1988). “On ordered weighted averaging aggregation operators in multicriteria decision making”, IEEE Transactions on Systems Man and Cybernetics, 18:183–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Yager, R. R. (1994). “Generation of Fuzzy Rules by Mountain Clustering”, J. Intelligent and Fuzzy Systems, 2:209–219.

    Google Scholar 

  • Yager, R. R. (1998). “Characterisations of fuzzy set properties”, In Handbook of Fuzzy Computation, E. H. Ruspini, P. P. Bonissone, and W. Pedrycz, eds., Institute of Physics Publishing Ltd., Bristol, UK, B2.5:1–8.

    Google Scholar 

  • Yen, J., and Langari, R. (1998). Fuzzy logic: intelligence, control and information. Prentice Hall, London.

    Google Scholar 

  • Zadeh, L. A. (1965). “Fuzzy Sets”, Journal of Information and Control, 8:338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1973). “Outline of a New Approach to the Analysis of Complex Systems and Decision Process”, IEEE Trans. on Systems, Man and Cybernetics, 3(1):28–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1978). “Fuzzy Sets as a Basis for a Theory of Possibility”, Fuzzy Sets and Systems, 1:3–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1983). “A Computational Approach to Fuzzy Quantifiers in Natural Languages”, Computational Mathematics Applications, 9:149–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann, H. J. (1996). Fuzzy set theory and its applications. Kluwer Academic Publishers, Boston, USA.

    MATH  Google Scholar 

  • Zimmermann, H. J., and Zysno, P. (1980). “Latent connectives in human decision making”, Fuzzy Sets and Systems, 4(1):37–51.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shanahan, J.G. (2000). Fuzzy Set Theory. In: Soft Computing for Knowledge Discovery. The Springer International Series in Engineering and Computer Science, vol 570. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4335-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4335-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6947-9

  • Online ISBN: 978-1-4615-4335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics