Skip to main content

Basic Preventive Maintenance Policies and their Variations

  • Chapter

Abstract

This chapter is concerned with the basic preventive maintenance policies arising in the context of the mathematical maintenance theory. Simple but practically important preventive maintenance optimization models, which involve age replacement and block replacement, are reviewed in the framework of the well-known renewal reward argument. Some variations to these basic models as well as the corresponding discrete time models are also introduced with the aim of the application of the theory to the practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S. G., and D’Esopo, D. A. An ordering policy for repairable stock items. Ope. Res, 16, (1968) 669–674.

    Article  Google Scholar 

  2. Allen, S. G., and D’Esopo, D. A. An ordering policy for stock items when delivery can be expedited. Ope. Res, 16 (1968) 880–883.

    Article  Google Scholar 

  3. Ansell, J., Bendell, A., and Humble, S. Age replacement under alternative cost criteria. Management Sci, 30 (1984) 358–367.

    Article  MATH  Google Scholar 

  4. Arrow, K. J., Karlin, S. and Scarf, H. Studies in Applied Probability and Management Science. Stanford University Press (eds.), Stanford, 1962.

    Google Scholar 

  5. Ascher, H. and Feingold, H. Repairable Systems Reliability. Marcel Dekker, N.Y., 1984.

    MATH  Google Scholar 

  6. Aven, T. and Jensen, U. Stochastic Models in Reliability. Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  7. Barlow, R. E., Engineering Reliability. SIAM, Berlin, 1998.

    Book  MATH  Google Scholar 

  8. Barlow, R. E., and Hunter, L. C. Optimum preventive maintenance policies. Ope. Res, 8 (1960) 90–100.

    Article  MathSciNet  MATH  Google Scholar 

  9. Barlow, R. E., and Hunter, L. C. Reliability analysis of a one-unit system. Ope. Res, 9 (1961) 200–208.

    Article  MathSciNet  MATH  Google Scholar 

  10. Barlow, R. E., and Proschan, F. Mathematical Theory of Reliability. John Wiley & Sons, N.Y., 1965.

    MATH  Google Scholar 

  11. Barlow, R. E., and Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart and Winston, N.Y., 1975.

    Google Scholar 

  12. Beichelt, F. A unifying treatment of replacement policies with minimal repair. Naval Res. Logist, 40 (1993) 51–67.

    Article  MATH  Google Scholar 

  13. Berg, M., and Cleroux, R. The block replacement problem with minimal repair and random repair costs. J. Stat. Comp. Simul, 15 (1982) 1–7.

    Article  MATH  Google Scholar 

  14. Berg, M., and Epstein, B. A modified block replacement policy. Naval Res. Logis. Quart, 23 (1976) 15–24.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bergman, B. On the optimality of stationary replacement strategies. J. Appl. Prob, 17 (1980) 178–186.

    Article  MathSciNet  MATH  Google Scholar 

  16. Block, H. W., Borges, W. S., and Savits, T. H. Age-dependent minimal repair. J. Appl. Prob, 22 (1985) 370–385.

    Article  MathSciNet  MATH  Google Scholar 

  17. Boland, P. J. Periodic replacement when minimal repair costs vary with time. Naval Res. Logist. Quart, 29 (1982) 541–546.

    Article  MATH  Google Scholar 

  18. Boland, P. J., and Proschan, F. Periodic replacement with increasing minimal repair costs at failure. Ope. Res, 30 (1982) 1183–1189.

    Article  MATH  Google Scholar 

  19. Christer, A. H. Refined asymptotic costs for renewal reward process. J. Opl. Res. Soc, 29 (1978) 577–583.

    MATH  Google Scholar 

  20. Christer, A. H. Comments on finite-period applications of age-based replacement models. IMA J. Math. Appl Busin. Indust, 1, (1987) 111–124.

    MathSciNet  MATH  Google Scholar 

  21. Christer, A. H. and Jack, N. An integral-equation a roach for replacement modelling over finite time horizons. IMA J. Math. Appl. Busin. Indust, 3, (1991) 31–44.

    MathSciNet  MATH  Google Scholar 

  22. Christer, A. H., Osaki, S., and Thomas, L. C. Stochastic Modelling in Innovative Manufacturing. Lecture Notes in Economics and Mathematical Systems, 445, Springer-Verlag (eds.), Berlin, 1997.

    Google Scholar 

  23. Cleroux, R., Dubuc, S., and Tilquin, C. The age replacement problem with minimal repair and random repair costs. Ope. Res, 27 (1979) 1158–1167.

    Article  MATH  Google Scholar 

  24. Cleroux, R., and Hanscom, M. Age replacement with adjustment and depreciation costs and interest charges. Technometrics, 16 (1974) 235–239.

    MathSciNet  MATH  Google Scholar 

  25. Derman, C., and Sacks, J. Replacement of periodically inspected equipment. Naval Res. Logist Quart, 7 (1960) 597–607.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dohi, T., Kaio, N. and Osaki, S. Continuous review cyclic inventory models with emergency order. J. Ope. Res. Soc. Japan, 38, 212–229 (1995).

    MathSciNet  MATH  Google Scholar 

  27. Dohi, T., Kaio, N. and Osaki, S. On the optimal ordering policies in maintenance theory — survey and applications. Applied Stochastic Models and Data Analysis, 14, 309–321 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  28. Dohi, T., Shibuya, T. and Osaki, S. Models for 1-out-of-Q systems with stochastic lead times and expedited ordering options for spares inventory. Euro. J. Opl. Res, 103,255–272 (1997).

    Article  MATH  Google Scholar 

  29. Feller, W. An Introduction to Probability Theory and Its Applications. NY: John Wiley & Sons 1957.

    MATH  Google Scholar 

  30. Fox, B. L. Age replacement with discounting. Ope. Res 14 (1966) 533–537.

    Article  MATH  Google Scholar 

  31. Gertsbakh, I. B. Models of Preventive Maintenance. North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

  32. Glasser, G. J. The age replacement problem. Technometrics, 9 (1967) 83–91.

    Article  MathSciNet  Google Scholar 

  33. Gnedenko, B. V., Belyayev, Y. K. and Solovyev, A. D. Mathematical Methods of Reliability Theory. Academic Press, N.Y., 1969.

    MATH  Google Scholar 

  34. Jorgenson, D. W., McCall, J. J. and Radner, R. Optimal Replacement Policy. North-Holland, Amsterdam, 1967.

    Google Scholar 

  35. Kaio, N. and Osaki, S. Optimum ordering policies with lead time for an operating unit in preventive maintenance. IEEE Trans. Reliab, R-27,(1978) 270–271.

    Article  Google Scholar 

  36. Kaio, N. and Osaki, S. Optimum planned maintenance with salvage costs. Int. J. Prod. Res, 16, 249–257 (1978).

    Article  Google Scholar 

  37. Kaio, N. and Osaki, S. Discrete-time ordering policies. IEEE Trans. Reliab, R-28,405–406 (1979).

    Article  Google Scholar 

  38. Kaio, N. and Osaki, S. Optimum planned maintenance with discounting. Int. J. Prod. Res, 18,515–523 (1980).

    Article  Google Scholar 

  39. Kaio, N., and Osaki, S. Review of discrete and continuous distributions in replacement models. Int. J. Sys. Sci, 19 (1988) 171–177.

    Article  MATH  Google Scholar 

  40. Karlin, S., and Taylor, H. M. A First Course in Stochastic Processes. NY: Academic Press, 1975.

    MATH  Google Scholar 

  41. Karlin, S., and Taylor, H. M. A Second Course in Stochastic Processes. NY: Academic Press, 1981.

    MATH  Google Scholar 

  42. McCall, J. J. Maintenance policies for stochastically failing equipment: a survey. Management Sci, 11 (1965) 493–521.

    Article  MathSciNet  MATH  Google Scholar 

  43. Morimura, H. On some preventive maintenance policies for IFR. J. Ope. Res. Soc. Japan, 12 (1970) 94–124.

    MathSciNet  MATH  Google Scholar 

  44. Munter, M. Discrete renewal processes. IEEE Trans. Reliab, R-20 (1971) 46–51.

    Article  Google Scholar 

  45. Nakagawa, T. A summary of discrete replacement policies. Euro. J. Opl. Res, 17 (1979) 382–392.

    Article  MathSciNet  Google Scholar 

  46. Nakagawa, T. A summary of periodic replacement with minimal repair at failure. J. Ope. Res. Soc. Japan, 24 (1979) 213–228.

    MathSciNet  Google Scholar 

  47. Nakagawa, T. Generalized models for determining optimal number of minimal repairs before replacement. J. Ope. Res. Soc. Japan, 24 (1981a) 325–357.

    MathSciNet  MATH  Google Scholar 

  48. Nakagawa, T. Modified periodic replacement with minimal repair at failure. IEEE Trans. Reliab, R-30 (1981b) 165–168.

    Article  Google Scholar 

  49. Nakagawa, T. Optimal policy of continuous and discrete replacement with minimal repair at failure. Naval Res. Logist. Quart, 31 (1984) 543–550.

    Article  MathSciNet  MATH  Google Scholar 

  50. Nakagawa, T. Periodic and sequential preventive maintenance policies. J. Appl. Prob, 23 (1986) 536–542.

    Article  MathSciNet  MATH  Google Scholar 

  51. Nakagawa, T. Modified discrete preventive maintenance policies. Naval Res. Logist. Quart, 33, 703–715 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  52. Nakagawa, T., and Kowada, M. Analysis of a system with minimal repair and its Application to replacement policy. Euro. J. Opl. Res, 12 (1983) 176–182.

    Article  MATH  Google Scholar 

  53. Nakagawa, T. and Osaki, S. Optimum replacement policies with delay. J. Appl. Prob, 11, (1974) 102–110.

    Article  MathSciNet  MATH  Google Scholar 

  54. Nakagawa, T. and Osaki, S. Analysis of a repairable system which operates at discrete times. IEEE Trans. Reliab, R-25, 110–112 (1976).

    Article  MathSciNet  Google Scholar 

  55. Nakagawa, T., and Osaki, S. Reliability analysis of a one-unit system with unrepairable spare units and its optimization applications. Opl. Res. Quart, 27 (1976) 101–110.

    Article  MathSciNet  MATH  Google Scholar 

  56. Nakagawa, T., and Osaki, S. Discrete time age replacement policies. Opl. Res. Quart, 28 (1977) 881–885.

    Article  MATH  Google Scholar 

  57. Ohnishi, M. Optimal minimal-repair and replacement problem under average cost criterion: optimality of (t, T)-policy. J. Ope. Res. Soc. Japan, 40 (1997) 373–389.

    MathSciNet  MATH  Google Scholar 

  58. Osaki, S. An ordering policy with lead time. Int. J. Sys. Sci, 8, (1977) 1091–1095.

    Article  MathSciNet  MATH  Google Scholar 

  59. Osaki, S. Stochastic System Reliability Modeling. World Scientific, Singapore, 1985.

    MATH  Google Scholar 

  60. Osaki, S. Applied Stochastic System Modeling. Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  61. Osaki, S., and Cao, J. Reliability Theory and Applications. World Scientific (eds.), Berlin, 1987.

    Google Scholar 

  62. Osaki, S., and Hatoyama, Y. Stochastic Models in Reliability Theory. Lecture Notes in Economics and Mathematical Systems, 235,Springer-Verlag (eds.), Berlin, 1984.

    Google Scholar 

  63. Osaki, S., Kaio, N. and Yamada, S. A summary of optimal ordering policies. IEEE Trans. Reliab, R-30,272–277 (1981).

    Article  Google Scholar 

  64. Osaki, S., and Nakagawa, T. A note on age replacement. IEEE Trans. Reliab, R-24 (1975) 92–94.

    Article  Google Scholar 

  65. Osaki, S., and Nakagawa, T. Bibliography for reliability and availability of stochastic systems’. IEEE Trans. Reliab. R-25 (1976) 284–287.

    Article  MathSciNet  Google Scholar 

  66. Osaki, S., and Yamada, S. Age replacement with lead time. IEEE Trans. Reliab, R-25 (1976) 344–345.

    Article  Google Scholar 

  67. Ozekici, S. Reliability and Maintenance of Complex Systems. NATO ASI Series, Springer (eds.), Berlin, 1996.

    Google Scholar 

  68. Park, K. S. Optimal number of minimal repairs before replacement. IEEE Trans. Reliab, R-28 (1979) 137–140.

    Google Scholar 

  69. Pierskalla, W. P., and Voelker, J. A. A survey of maintenance models: the control and surveillance of deteriorating systems. Naval Res. Logist. Quart, 23 (1976) 353–388.

    Article  MathSciNet  MATH  Google Scholar 

  70. Phelps, R.I. Replacement policies under minimal repair. J. Opl. Res. Soc, 32 (1981) 549–554.

    MathSciNet  MATH  Google Scholar 

  71. Phelps, R.I. Optimal policy for minimal repair. J. Opl. Res. Soc, 34 (1983) 425–427.

    Article  MATH  Google Scholar 

  72. Ross, S. M. Applied Probability Models with Optimization Applications, San Francisco: Holden-Day, 1970.

    MATH  Google Scholar 

  73. Schaeffer, R.L. Optimum age replacement policies with an increasing cost factor. Technometrix, 13 (1971) 139–144.

    Article  Google Scholar 

  74. Segawa, Y., Ohnishi, M., and Ibaraki, T. Optimal minimal-repair and replacement problem with average dependent cost structure. Computers & Math. Appl, 24 (1992) 91–101.

    Article  MATH  Google Scholar 

  75. Sherif, Y. S., and Smith, M. L. Optimal maintenance models for systems subject to failure-a review. Naval Res. Logist. Quart, 28 (1981) 47–74.

    Article  MathSciNet  MATH  Google Scholar 

  76. Shibuya, T., Dohi, T. and Osaki, S. Spare part inventory models with stochastic lead times. Int. J. Prod. Econ, 55,257–271 (1998).

    Article  Google Scholar 

  77. Simon, R. M., and D’Esopo, D. A. Comments on a paper by S. G. Allen and D. A.D’Esopo: An ordering policy for repairable stock items. Ope. Res, 19, (1971) 986–989.

    Article  Google Scholar 

  78. Tahara, A., and Nishida, T. Optimal replacement policy for minimal repair model. J. Ope. Res. Soc. Japan, 18 (1975) 113–124.

    MathSciNet  MATH  Google Scholar 

  79. Taylor, H. M., and Karlin, S. An Introduction to Stochastic Modeling. NY: Academic Press, 1984.

    Google Scholar 

  80. Thomas, L. C. and Osaki, S. A note on ordering policy. IEEE Trans. Reliab, R-27, (1978) 380–381.

    Article  Google Scholar 

  81. Thomas, L. C. and Osaki, S. An optimal ordering policy for a spare unit with lead time. Euro. J. Opl. Res, 2, (1978) 409–419.

    Article  MathSciNet  MATH  Google Scholar 

  82. Tilquin, C., and Cleroux, R. Block replacement with general cost structure. Technometrics, 17 (1975) 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  83. Tilquin, C., and Clerroux, R. Periodic replacement with minimal repair at failure and adjustment costs. Naval Res. Logist. Quart, 22 (1975) 243–254.

    Article  MathSciNet  MATH  Google Scholar 

  84. Valdez-Flores, C., and Feldman, R. M. A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Res. Logist, 36, 419–446 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  85. Wiggins, A. D. A minimum cost model of spare parts inventory control. Technometrics, 9 (1967), 661–665.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dohi, T., Kaio, N., Osaki, S. (2000). Basic Preventive Maintenance Policies and their Variations. In: Ben-Daya, M., Duffuaa, S.O., Raouf, A. (eds) Maintenance, Modeling and Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4329-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4329-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6944-8

  • Online ISBN: 978-1-4615-4329-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics