Basic Quantum Mechanics

  • George H. Duffey


ACCORDING TO CLASSICAL MECHANICS, each infinitesimal part of a given system is localized at a point at any given time. As time progresses, this point travels along a definite curve at a determinable smoothly varying rate.


Attenuation Coherence Half Life Resis Sine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Borowitz, S.: 1967, Fundamentals of Quantum Mechanics, W. A. Benjamin, New York, pp 1–169.Google Scholar
  2. Bunge, M.: 1985, Treatise on Basic Philosophy, vol. 7, part I, Formal and Physical SciencesReidel, Dordrecht, Holland, pp. 165–219.Google Scholar
  3. Duffey, G. H.: 1984, A Development of Quantum Mechanics Based on Symmetry Considerations Reidel, Dordrecht, Holland, pp. 1–37, 113–120.Google Scholar
  4. Duffey, G. H.: 1992, Quantum States Processes, Prentice- Hall, Englewood Cliffs, NJ, pp. 1–105.Google Scholar


  1. Baggott, J.: 1990, “Quantum Mechanics and the Nature of Physical Reality,” J. Chem. Educ. 67 638–642.CrossRefGoogle Scholar
  2. Ballentine, L. E.: 1986, “Probability Theory in Quantum Mechanics,” Am. J. Phys. 54, 883–889.CrossRefGoogle Scholar
  3. Bardou, F.: 1991, “Transition between Particle Behavior and Wave Behavior,” Am. J. Phys. 59458–461.CrossRefGoogle Scholar
  4. Cereceda, J. L.: 1996, “An Apparent Paradox at the Heart of Quantum Mechanics,” Am. J. Phys. 64459–456.CrossRefGoogle Scholar
  5. El-Issa, B D.: 1936, “The Particle in a Box Revisited,” J. Chem. Educ. 63, 761–764.Google Scholar
  6. Fucaloro, A. F.: 1986, “Some Characteristics of Approximate Wave Functions,” J. Chem. Educ. 63, 579–581.CrossRefGoogle Scholar
  7. Gellene, G. I.: 1995, “Resonant States of a One-Dimensional Piecewise Constant Potential,” J. Chem. Educ. 72, 1015–1018.CrossRefGoogle Scholar
  8. Gutierrez, G., and Yanez, J. M.: 1997, “Can an Ideal Gas Feel the Shape of its Container?” Am. J. Phys. 65, 739–743.CrossRefGoogle Scholar
  9. Jordan, T. F.: 1991, “Assumptions Implying the Schrödinger Equation,” Am. J. Phys. 59, 606–608.CrossRefGoogle Scholar
  10. Kash, M. M., and Shields, G. C.: 1994, “Using the Franck- Hertz Experiment to Illustrate Quantization,” J. Chem. Educ. 71, 466–468.CrossRefGoogle Scholar
  11. Leming, C. W., and Smith, A. F.: 1991, “A Numerical Study of Quantum Barrier Penetration in One Dimension,”Am. J. Phys. 59, 441–443.CrossRefGoogle Scholar
  12. Li, W. -K, and Blinder, S. M.: 1987, “Particle in an Equilateral Triangle: Exact Solution of a Non-separable Problem,“ J. Chem. Educ. 64, 130–132.CrossRefGoogle Scholar
  13. Liang, Y. Q., and Dardenne, Y. X.: 1995, “Momentum Distributions for a Particle in a Box,” J. Chem. Educ. 72, 148–151.CrossRefGoogle Scholar
  14. Mermin, N. D.: 1994, “Quantum Mysteries Refined,” Am. J. Phys. 62880–887.CrossRefGoogle Scholar
  15. Rioux, F.: “Numerical Methods for Finding Momentum Space Distributions,” J. Chem. Educ. 74, 605–606.Google Scholar
  16. Styer, D. F.: 1996, “Common Misconceptions Regarding Quantum Mechanics,” J. Chem. Educ. 64, 31–34.Google Scholar
  17. Torre, A. C. de la, and Dotson, A. C.: 1996, “An Entangled Opinion on the Interpretation of Quantum Mechanics,” Am. J. Phys. 64174.CrossRefGoogle Scholar
  18. Volkamer, K., and Lerom, M. W.: 1992, “More about the Particle-in-a-Box System: The confinement of Matter and the Wave-Particle Dualism, ”J. Chem. Educ. 69, 100–107.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2000

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.South Dakota State UniversityBrookings

Personalised recommendations