Basic Quantum Mechanics

  • George H. Duffey
Chapter

Abstract

ACCORDING TO CLASSICAL MECHANICS, each infinitesimal part of a given system is localized at a point at any given time. As time progresses, this point travels along a definite curve at a determinable smoothly varying rate.

Keywords

Attenuation Coherence Half Life Resis Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. Borowitz, S.: 1967, Fundamentals of Quantum Mechanics, W. A. Benjamin, New York, pp 1–169.Google Scholar
  2. Bunge, M.: 1985, Treatise on Basic Philosophy, vol. 7, part I, Formal and Physical SciencesReidel, Dordrecht, Holland, pp. 165–219.Google Scholar
  3. Duffey, G. H.: 1984, A Development of Quantum Mechanics Based on Symmetry Considerations Reidel, Dordrecht, Holland, pp. 1–37, 113–120.Google Scholar
  4. Duffey, G. H.: 1992, Quantum States Processes, Prentice- Hall, Englewood Cliffs, NJ, pp. 1–105.Google Scholar

Articles

  1. Baggott, J.: 1990, “Quantum Mechanics and the Nature of Physical Reality,” J. Chem. Educ. 67 638–642.CrossRefGoogle Scholar
  2. Ballentine, L. E.: 1986, “Probability Theory in Quantum Mechanics,” Am. J. Phys. 54, 883–889.CrossRefGoogle Scholar
  3. Bardou, F.: 1991, “Transition between Particle Behavior and Wave Behavior,” Am. J. Phys. 59458–461.CrossRefGoogle Scholar
  4. Cereceda, J. L.: 1996, “An Apparent Paradox at the Heart of Quantum Mechanics,” Am. J. Phys. 64459–456.CrossRefGoogle Scholar
  5. El-Issa, B D.: 1936, “The Particle in a Box Revisited,” J. Chem. Educ. 63, 761–764.Google Scholar
  6. Fucaloro, A. F.: 1986, “Some Characteristics of Approximate Wave Functions,” J. Chem. Educ. 63, 579–581.CrossRefGoogle Scholar
  7. Gellene, G. I.: 1995, “Resonant States of a One-Dimensional Piecewise Constant Potential,” J. Chem. Educ. 72, 1015–1018.CrossRefGoogle Scholar
  8. Gutierrez, G., and Yanez, J. M.: 1997, “Can an Ideal Gas Feel the Shape of its Container?” Am. J. Phys. 65, 739–743.CrossRefGoogle Scholar
  9. Jordan, T. F.: 1991, “Assumptions Implying the Schrödinger Equation,” Am. J. Phys. 59, 606–608.CrossRefGoogle Scholar
  10. Kash, M. M., and Shields, G. C.: 1994, “Using the Franck- Hertz Experiment to Illustrate Quantization,” J. Chem. Educ. 71, 466–468.CrossRefGoogle Scholar
  11. Leming, C. W., and Smith, A. F.: 1991, “A Numerical Study of Quantum Barrier Penetration in One Dimension,”Am. J. Phys. 59, 441–443.CrossRefGoogle Scholar
  12. Li, W. -K, and Blinder, S. M.: 1987, “Particle in an Equilateral Triangle: Exact Solution of a Non-separable Problem,“ J. Chem. Educ. 64, 130–132.CrossRefGoogle Scholar
  13. Liang, Y. Q., and Dardenne, Y. X.: 1995, “Momentum Distributions for a Particle in a Box,” J. Chem. Educ. 72, 148–151.CrossRefGoogle Scholar
  14. Mermin, N. D.: 1994, “Quantum Mysteries Refined,” Am. J. Phys. 62880–887.CrossRefGoogle Scholar
  15. Rioux, F.: “Numerical Methods for Finding Momentum Space Distributions,” J. Chem. Educ. 74, 605–606.Google Scholar
  16. Styer, D. F.: 1996, “Common Misconceptions Regarding Quantum Mechanics,” J. Chem. Educ. 64, 31–34.Google Scholar
  17. Torre, A. C. de la, and Dotson, A. C.: 1996, “An Entangled Opinion on the Interpretation of Quantum Mechanics,” Am. J. Phys. 64174.CrossRefGoogle Scholar
  18. Volkamer, K., and Lerom, M. W.: 1992, “More about the Particle-in-a-Box System: The confinement of Matter and the Wave-Particle Dualism, ”J. Chem. Educ. 69, 100–107.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2000

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.South Dakota State UniversityBrookings

Personalised recommendations