Adenoviral and Transgenic Approaches for the Conditional Deletion of Genes from Mammary Tissue

  • Kay-Uwe Wagner
  • Edmund B. RuckerIII
  • Lothar Hennighausen


Over the past decade the tools of gene targeting have permitted an unparalleled insight into genetic pathways that control mammary development and tumorigenesis in the mouse. However, the role of many genes in development and disease remains elusive, since their deletion from the mouse genome is either lethal for the mouse or does not mimic human disease progression. Thus, targeting gene deletions or modifications precisely to mammary epithelial cells during distinct time windows is a promising approach to establish high-fidelity mouse models for the study of development and disease.


Mammary Gland Long Terminal Repeat Gene Deletion Mouse Mammary Tumor Virus Mammary Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.









embryonic stem


gene of interest


long terminal repeat


mouse mammary tumor virus


whey acidic protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Hennighausen and G. W. Robinson (1998). Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 12 (4): 449–455.PubMedCrossRefGoogle Scholar
  2. 2.
    G. W. Robinson, D. Accili, and L. Hennighausen (2000). Rescue of mammary epithelium of early lethal phenotypes by embryonic mammary gland transplantation as exemplified with insulin receptor null mice, Chapter 26 this volume.Google Scholar
  3. 3.
    N. D. Horseman, W. Zhao, E. Montecino-Rodriguez, M. Tanaka, K. Nakashima, S. J. Engle, E Smith, E. Markoff, and K. Dorshkind (1997). Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16: 6926–6935.PubMedCrossRefGoogle Scholar
  4. 4.
    K. U. Wagner, W. S. Young, X. Liu, E. I. Ginns, M. Li, P. A. Furth, and L. Hennighausen (1997). Oxytocin and milk removal are required for post-partum mammary-gland development. Genes and Function 1 (4): 233–244.PubMedCrossRefGoogle Scholar
  5. 5.
    J. R. Brown, H. Ye, R. T. Bronson, P. Dikkes, and M. E. Greenberg (1996). A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86: 297–309.PubMedCrossRefGoogle Scholar
  6. 6.
    L. A. Donehower, M. Harvey, H. Vogel, M. J. McArthur, C. A. J. Montgomery, S. H. Park, T. Thompson, R. J. Ford, and A. Bradley (1996). Effects of genetic background on tumorigenesis in p53-deficient mice. Mol. Carcinog 14: 16–22.CrossRefGoogle Scholar
  7. 7.
    D. W. Threadgill, A. A. Dlugosz, L. A. Hansen, T. Tennenbaum, U. Lichti, D. Yee, C. LaMantia, T. Mourton, K. Herrup, and R. C. Harris (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234.PubMedCrossRefGoogle Scholar
  8. 8.
    T. Jacks, A. Fazeli, E. M. Schmitt, R. T. Bronson, M. A. Goodell, and R. A. Weinberg (1992). Effects of an Rb mutation in the mouse. Nature 359: 295–300.PubMedCrossRefGoogle Scholar
  9. 9.
    B. Sauer and N. Henderson (1988). Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage Pl. Proc. Natl. Acad. Sci. U.S.A 85: 5166–5170.PubMedCrossRefGoogle Scholar
  10. 10.
    P. C. Orban, D. Chui, and J. D. Marth (1992). Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A 89: 6861–6865.PubMedCrossRefGoogle Scholar
  11. 11.
    M. Lakso, B. Sauer, B. J. Mosinger, E. J. Lee, R. W. Manning, S. H. Yu, K. L. Mulder, and H. Westphal (1992). Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A 89: 6232–6236.PubMedCrossRefGoogle Scholar
  12. 12.
    H. Gu, J. D. Marth, P. C. Orban, H. Mossmann, and K. Rajewsky (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106.PubMedCrossRefGoogle Scholar
  13. 13.
    E. Buchholz, P. O. Angrand, and A. F. Stewart (1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol 16: 657–662.PubMedCrossRefGoogle Scholar
  14. 14.
    E. Marshall (1998). NIH, DuPont declare truce in mouse war. Science 281: 1261–1262.PubMedCrossRefGoogle Scholar
  15. 15.
    R. Ramirez-Solis, P. Liu, and A. Bradley (1995). Chromosome engineering in mice. Nature 378: 720–724.PubMedCrossRefGoogle Scholar
  16. 16.
    J. Van Deursen, M. Fornerod, B. Van Rees, and G. Grosveld (1995). Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. U.S.A 92: 7376–7380.PubMedCrossRefGoogle Scholar
  17. 17.
    K. U. Wagner, R. J. Wall, L. St.-Onge, P. Gruss, A. Wynshaw-Boris, L. Garrett, M. Li, P. A. Furth, and L. Hennighausen (1997). Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25 (21): 4323–4330.PubMedCrossRefGoogle Scholar
  18. 18.
    S. Seibert, D. J. Bentley, D. W. Melton, D. Ronnie, P. Lourenco, C. J. Watson, and A. R. Clarke (1998). Efficient BLG-Cre mediated gene deletion in the mammary gland. Transgenic Res. 7: 387–396.CrossRefGoogle Scholar
  19. 19.
    C. Barlow, M. Schroeder, J. Lekstrom-Himes, H. Kylefjord, C. X. Deng, A. Wynshaw-Boris, B. M. Spiegelman, and K. G. Xanthopoulos (1997). Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments [published erratum appears in Nucleic Acids Res. 25(21):4429 (1997)]. Nucleic Acids Res. 25: 2543–2545.PubMedCrossRefGoogle Scholar
  20. 20.
    U. A. Betz, C. A. Vosshenrich, K. Rajewsky, and W. Muller (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol 6: 1307–1316.PubMedCrossRefGoogle Scholar
  21. 21.
    X. Xu, K. U. Wagner, D. Larson, Z. Weaver, C. Li, T. Ried, L. Hennighausen, A. Wynshaw-Boris, and C. X. Deng (1999). Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet 22: 37–43.PubMedCrossRefGoogle Scholar
  22. 22.
    K. U. Wagner (1998). Adenoviral and transgenic approaches to delete genes from mammary tissue via Crelox recombination. Workshop on Conditional Genetic Technologies in the Mouse, Cold Spring Harbor Laboratory, August 31-September 2, 1998. The multimedia online lecture (audio and slide presentation) is accessible at
  23. 23.
    N. Motoyama, E Wang, K. A. Roth, H. Sawa, K. Nakayama, I. Negishi, S. Senju, Q. Zhang, and S. Fujii (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510.PubMedCrossRefGoogle Scholar
  24. 24.
    L. A. Chodosh (1998). Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J. Mammary Gland Biol 3 (4): 389–402.CrossRefGoogle Scholar
  25. 25.
    L. St.-Onge, P. A. Furth, and P. Gruss (1996). Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24: 3875–3877.PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Zhang, C. Riesterer, A. M. Ayrall, E Sablitzky, T. D. Littlewood, and M. Reth (1996). Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24: 543–548.PubMedCrossRefGoogle Scholar
  27. 27.
    C. Kellendonk, E Tronche, A. P. Monaghan, P. O. Angrand, E Stewart, and G. Schutz (1996). Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24: 1404–1411.PubMedCrossRefGoogle Scholar
  28. 28.
    J. Brocard, R. Feil, P. Chambon, and D. Metzger (1998). A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26: 4086–4090.PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Kanegae, G. Lee, Y. Sato, M. Tanaka, M. Nakai, T. Sakaki, S. Sugano, and I. Saito (1995). Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23: 3816–3821.PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Wang, L. A. Krushel, and G. M. Edelman (1996). Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. U.S.A 93: 3932–3936.PubMedCrossRefGoogle Scholar
  31. 31.
    Y. H. Lee, B. Sauer, P. E Johnson, and E J. Gonzalez (1997). Disruption of the c/ebp alpha gene in adult mouse liver. Mol. Cell Biol 17: 6014–6022.PubMedGoogle Scholar
  32. 32.
    M. Li, K. U. Wagner, and P. A. Furth (1999). Transfection of primary mammary epithelial cells by viral and nonviral methods, Chapter 21 this volume.Google Scholar
  33. 33.
    R. J. Parks, L. Chen, M. Anton, U. Sankar, M. A. Rudnicki, and F. L. Graham (1996). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. U.S.A 93: 13565–13570.PubMedCrossRefGoogle Scholar
  34. 34.
    M. Lakso, J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt, and H. Westphal (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. U.S.A 93: 5860–5865.PubMedCrossRefGoogle Scholar
  35. 35.
    A. Nagy, C. Moens, E. Ivanyi, J. Pawling, M. Gertsenstein, A. K. Hadjantonakis, M. Pirity, and J. Rossant (1998). Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol 8: 661–664.PubMedCrossRefGoogle Scholar
  36. 36.
    E. N. Meyers, M. Lewandoski, and G. R. Martin (1998). An FgfS mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet 18: 136–141.PubMedCrossRefGoogle Scholar
  37. 37.
    E Soriano (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet 21: 70–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Kay-Uwe Wagner
    • 1
  • Edmund B. RuckerIII
    • 1
  • Lothar Hennighausen
    • 1
  1. 1.Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive, and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations