A brief review and critical evaluation of the status of microbiotests

  • C. R. Janssen
  • M. Vangheluwe
  • P. Van Sprang


A review is given on some of the current trends in the field of alternative, small-scale aquatic toxicity tests. Examples of recently developed microbiotests with bacteria, algae and invertebrates are used to illustrate potential applications and short-comings of some of these assays. The major drawback of the majority of new microbiotests is the lack of published data on various aspects of their test development and application possibilities. Consequently many of these tests do not receive the regulatory recognition which they may deserve. It is concluded that for most microbiotests further research and test evaluation is needed before they will gain widespread acceptance as valid alternatives to the currently used conventional test procedures.


Toxicity Test Toxicity Assay Acute Toxicity Test Aquatic Toxicity Aquatic Toxicology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM. 1990. Standard guide for conducting static 96h toxicity tests with microalgae, E1218-90. American Society for Testing and Materials, Philadelphia, USA.Google Scholar
  2. APHA. 1989. Toxicity testing with phytoplankton. Standard Methods for the Examination of Water and Wastewater, 17th Edition, American Public Health Association, Washington, USA.Google Scholar
  3. Ames B.N., Mc Cann J. and Yamasaki, E. 1975 Methods for detecting carcinogens and mutagens with Salmonella/mammalian-microsome mutagenicity test. Mut.Res. 7541:4192–4203.Google Scholar
  4. Amparado R.F. 1995. Development and application of a cost-effective algal growth inhibition test with the green alga Selenastrum capricornutum (Printz), Ph.D. thesis, University of Ghent, Belgium. 217. pages.Google Scholar
  5. Bitton G., Rhodes K. and Koopman B. 1996. Ceriofast: an acute toxicity test based on Ceriodaphnia dubia feeding behavior. Environ. Toxicol Chem. 152:123–125.Google Scholar
  6. Bitton G., Koopman B. and Agami O. 1992a. MetPAD: a bioassay for rapid assessment of heavy metal toxicity in wastewater. Arch.Environ.Contam.Toxicol 64:834–836.Google Scholar
  7. Bitton G., Rhodes K., Koopman B. and Cornejo M. 1995. Short-term toxicity assay based on daphnid feeding behavior. Water Environ. Res. 67:290–293.CrossRefGoogle Scholar
  8. Bitton G., Campell M. and Koopman B. 1992a. MetPAD: a bioassay kit for the specific determination of heavy metal toxicity in sediments from harzardous waste sites. Environ Toxicol.Water Qual. lnt. 7:323–328.CrossRefGoogle Scholar
  9. Blaise C., Sergy G., Bermingham N. and Van Coillie R. 1988. Biological testing-development, application and trends in Canadian Environmental Protection Laboratories. Tox. Assess. lnt. J. 3:385–406.CrossRefGoogle Scholar
  10. Blaise C., Legault R., Bermingham N., Van Coille R. and Vasseur P. 1986. A simple microplate algal assay for aquatic toxicity assessment. Tox.Assess.IntJ. 1:261–281.CrossRefGoogle Scholar
  11. Blaise C. 1991. Microbiotests in aquatic ecotoxicology: characteristics, utility and prospects. Environ.Toxicol.Water QuaLlnt J. 6:145–156.CrossRefGoogle Scholar
  12. Blaise C., Ferard J.F. and Vasseur P. 1998. Microplate toxicity tests with microalgae: a review. In Wells P.G., Lee K. and Blaise C., eds, Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice, CRC Publishers, pp 269–288.Google Scholar
  13. Bozeman J., Koopman K. and Bitton G. 1989. Toxicity testing using immobilized algae. Aquat.Tox. 9:345–352.CrossRefGoogle Scholar
  14. Bulich A.A. and Greene M.M. 1979. The use of luminescent bacteria for biological monitoring of water quality. In Schram E and Philip, eds, Proceedings of the International Symposium on the Analysis and Application of Bioluminescence and Chemiluminescence: Schram, State Printing and Publ. Inc., pp 193–211.Google Scholar
  15. Bulich A.A. and Isenberg. 1980. Use of the luminescent bacteria systems for rapid assessment in aquatic toxicology. Adv.Instrument. 35:35–40.Google Scholar
  16. Bulich A.A. 1982. A practical and reliable method for monitoring the toxicity of aquatic samples. Proc.Biochem. 17:45–57.Google Scholar
  17. Cairns J., Jr. and Pratt J.R. 1989. In Munawar M, Dixon G., Mayfield C.I., Reynoldson T. and Sadar M.H., eds, Environmental bioassay techniques and their application. Hydrobiologia, 188/189, Kluwer Academic Publishers, Belgium, pp 2–20.Google Scholar
  18. Calleja M., Persoone G. and Geladi P. 1993a. The predictive potential of a battery of ecotoxicological tests for human acute toxicity as evaluated with the first 50 MEIC chemicals. Atla 21:330–349.Google Scholar
  19. Calleja M., Persoone G. and Geladi P. 1994a Human acute toxicity prediction of the first 50 MEIC chemicals by a battery of ecotoxicological tests and physical-chemical properties, Fd.Chem.Toxic. 322:173–187.CrossRefGoogle Scholar
  20. Calleja M., Persoone G. and Geladi P. 1994b. QSAR models for predicting the acute toxicity of selected organic chemicals with diverse structures to aquatic non-vertebrates and humans. SAR and QSAR Environ.Res. 2:193–234.CrossRefGoogle Scholar
  21. Calleja M., Persoone G. and Geladi P. 1993a. Comparative acute toxicity of the first 50 MEIC chemicals to aquatic non-vertebrates. Arch.Environm.Contamin.Toxicol. 1:69–78.Google Scholar
  22. Caux P.Y., Blaise C., Le Blanc P. and Tache M. 1992. A phytoassay procedure using fluorescence induction. Environ. Toxicol. Chem. 11:549–557.CrossRefGoogle Scholar
  23. CCME 1991. Interim Canadian Environmental Quality Criteria for Contaminated Sites, Report, Canadian Council of Ministers of the Environment, EPC-CS34, Enviroment Canada, Ottowa, Canada.Google Scholar
  24. Centeno M.D., Brendonck L. and Persoone G. 1993a. Cyst-based toxicity tests: XL Influence of production, processing and storage conditions of resting eggs of Streptocephalus proboscideus (Crustacea: Branchiopoda: Anostraca) on the sensitivity of larvae to selected reference toxicants. Bull. Environ. Contam. Toxicol. 51:927–934.CrossRefGoogle Scholar
  25. Centeno M.D., Brendonck L. and Persoone G. 1993b. Cyst-based toxicity tests: III. Development and standardization of an acute toxicity test with the freshwater anostracan crustacean Streptocephalus proboscideus, In Soares A.M.V.M. and Calow, P., eds, Progress in Standardization of Aquatic Toxicity Tests, Lewis Publishers, Boca Raton, USA, pp 37–55.Google Scholar
  26. Clément B., Persoone G., Janssen C. and Le Dû-Delepierre A. 1996. Estimation of the hazard of landfills through toxicity testing of leachates. I. Determination of leachate toxicity with a battery of acute tests. Chemosphere 1996, in press.Google Scholar
  27. De Coen W., Janssen C.R. and Giesy J. 2000. Biomarker-based microbiotests: state of the art. In Persoone G., Janssen C.R. and De Coen W., eds, New Microbiotests for Routine Toxicity Screening and Biomonitoring, Kluwer Academic/Plenum Publishers, pp. 13–27.Google Scholar
  28. De Coen W.M., Janssen C.R. and Persoone G. 1995. Rapid toxicity screening of sediment pore waters using physiological and biochemical biomarkers of Daphnia magna. Second SET AC World Congress—Abstract book. Society of Environmental Toxicology and Chemistry Press, Pensacola, USA. 197 pages.Google Scholar
  29. Depledge M. 1996. In Baird D.J., Maltby L., Greig-Smith P.W. and Douben P.E.T., eds, Ecotoxicology: Ecological Dimensions. Chapman & Hall, London, UK, pp 10–11.Google Scholar
  30. Douderoff P., Anderson B.G., Burdick G.E., Galtsoff P.S., Hart W.B., Patrick R., Stronge E.R., Surber E.W. and Van Horn W.M. 1953. Bio-assay for the evaluation of acute toxcity of industrial wastes to fish. Sewage lnd.Wastes23:1380–1397.Google Scholar
  31. Dutka B.J. and Gorrie J.F. 1989. Assessment of toxicant activity in sediments by the ECHA biocide biomonitor. Environ. Pollut. 57:1–7.CrossRefGoogle Scholar
  32. Dutka B.J. and Kwan K.K. 1982. Application of four bacterial screening procedures to assess changes in the toxicity of chemicals in mixtures. Environ.Pollut. 29:125–134.CrossRefGoogle Scholar
  33. Espiritu E.Q., Janssen C.R. and Persoone G. 1995. Cyst-based Toxicity Tests: VII. Evaluation of the 1 hour enzymatic inhibition test (Fluotox) with Artemia nauplii. Environ.Tox.Water Qual. 10:25–34.CrossRefGoogle Scholar
  34. Espiritu Q.E. 1994. Development of an enzymatic toxicity test with selected Phyllopod species (Crustacea: Anostraca and Cladocera). Ph.D. thesis, University of Ghent, Belgium. 279 pages.Google Scholar
  35. Gala W.R. and Giesy J.P. 1993. Flow cytometric techniques to assess toxicity to algae. In Landis W. and Vander Schalie W.H., eds, Aquatic Toxicology and Risk Assessment, Vol. 13, ASTM, Philadelphia, USA, pp 237–246.Google Scholar
  36. Gilron G.L. and Lynn D.H. 1998. Ciliated Protozoa as Test Organisms in Toxicity Assessments. In Wells P.G., Lee K. and Blaise C., eds, Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice, CRC Publishers, pp 323–336.Google Scholar
  37. Hart W.B., Douderoff P. and Greenbank J. 1945. The evaluation of the toxicity of industrial wastes, chemicals and other substances to freshwater fishes.Philadeplphia Waste Control Laboroatory, Atlantic Refining Co., Philadelphia, USA.Google Scholar
  38. Hayes K.R., Douglas W.S., Terrell Y., Fischer J., Lyons L.A. and Briggs L.J. 1993. Predictive ability of the Daphnia magna IQ toxicity test for ten diverse water treatment additives, Bull.Environ.Contam.Toxicol. 51:252–260.Google Scholar
  39. Hodson P.V. 1994. As our science matures, so should our journal. Environ.Toxicol.Chem. 13:1.CrossRefGoogle Scholar
  40. Huggett R.J., Kimerle R.A., Merhle P.M. and Bergman H.L. 1992. Biomarkers—Biochemical, Physiological, and Histological Markers of Antropogenic Stress, Lewis Publishers, Boca Raton, USA.347 pages.Google Scholar
  41. ISO 1987. Algal growth inhibition test, draft ISO standard ISO/DIS 10253.2, International Organization for Standardization, Paris, France.Google Scholar
  42. ISO 1995. Water Quality—Pseudomonas putida growth inhibition test, ISO/TC 147/DC 5, International Organization for Standardization, Paris, France.Google Scholar
  43. Janssen C.R. 1998. Alternative assays for routine toxicity assessments: a review. In Schuurmann G. and Markert B.A., eds, Ecotoxicology: ecological fundamentals, chemical exposure and biological effects, Wiley & Sons, London, UK, pp 813–831.Google Scholar
  44. Janssen C.R. and Persoone G. 1993. Rapid toxicity screening tests for aquatic biota: I. Methodology and experiments with Daphnia magna. Environ.Toxicol.Chem. 12:711–717.Google Scholar
  45. Janssen C.R., Espiritu E.Q. and Persoone, G. 1994. Evaluation of the new“enzymatic inhibition”criterion for rapid toxicity testing with Daphnia magna. In Soares A.M.V.M. and Calow P., eds, Progress in standardization of aquatic toxicity tests, Lewis Publishers, Boca Raton, USA, pp 71–81.Google Scholar
  46. Johnson B.T. 1993. Activated Mutatox assay for the detection of genotoxic substances. Environ.Toxicol.Water Qual. lnt. J. 8:103–113.CrossRefGoogle Scholar
  47. Johnson I. 1995. Identification of screening, lethal and sublethal toxicity tests for assessing effluent toxicity. National Rivers Authority U.K., R&D note 389, London, UK.Google Scholar
  48. Johnson I. 2000. Criteria-based procedure for selecting test methods for effluent testing and its application to Toxkit microbiotests. In Persoone G, Janssen C.R. and De Coen W., eds, New Microbiotests for Routine Toxicity Screening and Biomonotoring, Kluwer Academic/Plenum Publishers, pp 74–95.Google Scholar
  49. Juchelka CM. and Snell T.W. 1994. Using rotifer ingestion rates for rapid toxicity assessment. Arch.Environm.Contamin.Toxicol. 26:549–554.CrossRefGoogle Scholar
  50. Juchelka CM. and Snell T.W. 1995. Rapid toxicity assessment using ingestion rate of cladocerans and ciliates. Arch.Environm.Contamin.Toxicol. 28:508–512.Google Scholar
  51. Keddy C.J., Greene J.C. and Bonnell M.A. 1995. Review of whole-organism bioassays: soil, freshwater sediment and freshwater assessment in Canada. Ecotox. Environ.Saf 30:221–251.CrossRefGoogle Scholar
  52. Kwan K.K. and Dutka B.J. 1990. Simple two-step sediment extraction procedure for use in genotoxicity and toxicity bioassays. Tox.Assess.Int.J. 5:395–404.CrossRefGoogle Scholar
  53. Kwan K.K. and Dutka B.J. 1992. A novel bioassay approach direct application of the Toxi-chromotest and the SOS chromotest to sediments. Environ.Toxicol Water Qual. 7:49–60.CrossRefGoogle Scholar
  54. Kwan K.K., Dutka B.J., Roa S.S. and Liu D. 1990. Mutatox test: a new test for monitoring environmental genotoxic agents. Environ.Pollut. 65:323–404.CrossRefGoogle Scholar
  55. Latif M., Persoone G., Janssen C., De Coen W. and Svardal K. 1995. Cost-effective toxicity testing of waste waters in Austria with conventional and cost-effective bioassays. Ecotox.Environ.Saf, 32:139–146.CrossRefGoogle Scholar
  56. Lewis M.A. 1994. Freshwater primary producers. In Calow P., ed, Handbook of Ecotoxicology, Blackwell Scientific Publ, UK, pp 28–50.Google Scholar
  57. Macek K.J. 1982. Aquatic toxicology: anarchy or democracy? In Pearson J.G., Foster R.B. and Bishop W.E., eds, Aquatic toxicology and hazard assessment. ASTM STP 766, American Society for Testing and Materials, Philadephia, USA, pp 3–8.CrossRefGoogle Scholar
  58. Maltby L. and Calow P. 1989. In Munawar M, Dixon G., Mayfield C.I., Reynoldson T. and Sadar M.H., eds, Environmental bioassay techniques and their application, Hydrobiologia, 188/189, 65–76. Kluwer Academic Publishers, Belgium.Google Scholar
  59. Maron D.M. and Ames B.N. 1983. Revised methods for the Salmonella mutagenicity test. Mutat.Res. 113:173–215.CrossRefGoogle Scholar
  60. Mayfield C.I. 1994. Microbial Systems. In Calow P., ed, Handbook of Ecotoxicology, Blackwell Scientific Publications, Oxford, UK, pp 9–28.Google Scholar
  61. OECD 1984. Algal growth inhibition test, OECD Guideline for Testing Chemicals, No. 201, Organization for Economic Cooperation and Development, Geneva, Switzerland.Google Scholar
  62. Pauli W. and Berger S. 1996. Proceedings of the International Workshop on a Protozan test protocol with Tetrahymena in aquatic toxicity testing. Umweltbundesamt Berlin, Germany, Report No UB A-FB 96-039.Google Scholar
  63. Peakall D. 1992. Animal Biomarkers as Pollution Indicators, Chapman & Hall, London, UK. 291 pages.CrossRefGoogle Scholar
  64. Peakall D. and Berger S. 1996. Proceedings of the International Workshop on a Protozoan test protocol with Tetrahymena in aquatic toxicity testing. Umweltbundesamt Berlin, Germany, Report No. UBA-FB 96-039.Google Scholar
  65. Persoone G. 1992. Cyst-based Toxicity Tests: VI. Toxkits and Fluotox tests as cost-effective tools for routine toxicity screening. In Steinhäuser K.G. and Hansen P.D., eds, Biologische Testverfahren, Gustav Fischer Verlag, Stuttgart, Germany, pp 563–576.Google Scholar
  66. Persoone G., Blaise C., Snell T.W., Janssen C. and Van Steertegem M. 1992. Cyst-based toxicity tests: II. Report on an international intercalibration exercise with three cost-effective Toxkits. Z. fur Angew. Zool., 79:17–36.Google Scholar
  67. Persoone G. 1998a. Development and first validation of a ‘culture free’ algal microbiotest: the Algaltoxkit. In Wells P.G., Lee K. and Blaise C., eds, Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice, CRC Publishers, pp 311–320.Google Scholar
  68. Persoone G. 1998b. Development and validation of Toxkit microbiotests with invertebrates, in particular crustaceans. In Wells P.G., Lee K. and Blaise C., eds, Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice, CRC Publishers, pp 437–449.Google Scholar
  69. Persoone G. and Van de Vel A. 1988. Cost-analysis of five current aquatic toxicity tests. Final Report EUR 11342 EN, Commission of the European Communities, Brussels, Belgium. 119 pages.Google Scholar
  70. Persoone G., Goyvaerts M.P., Janssen C.R., De Coen W. and Van Steertegem M., 1993. Cost-effective acute hazard monitoring of polluted waters and waste dumps with the aid of Toxkits. Commission of the European Communities, Contract ACE 89/BE2/D3. Brussels, Belgium. 600. pages.Google Scholar
  71. Persoone G., Janssen C.R. and De Coen W. 1995. Cyst-based toxicity tests: comparison of the sensitivity of the acute Daphnia magna test and two crustacean microbiotests for chemicals and wastes. Chemosphere 29:2701–2710.CrossRefGoogle Scholar
  72. Persoone G. and Janssen C.R. 1994. Freshwater invertebrate toxicity tests, In Calow P., ed, Handbook of Ecotoxicology, Blackwell Scientific Publ, UK, pp 51–65.Google Scholar
  73. Persoone G. 1991. Cyst-based toxicity tests: I. A promising new tool for rapid and cost-effective toxicity screening of chemicals and effluents. Z. fur Angew.Zool. 78:235–241.Google Scholar
  74. Quillardet P. and Hofnung M. 1993. The SOS chromotest—a review. Mutat.Res. 97: 235–279.Google Scholar
  75. Radetski CM., Ferard J.M. and Blaise C. 1995. A semistatic microplate based phytotoxicity test Environ.Toxicol.Chem. 14:299–302.CrossRefGoogle Scholar
  76. Rand G.M. 1995. Fundamentals of Aquatic Toxicology, Rand G.M., ed, Taylor & Francis, London, UK. 1038 pages.Google Scholar
  77. Reinhartz A., Lampert I., Hersberg M. and Fish, F. 1987. A new short-term sensitive bacterial assay kit for the detection of toxicants. Tox. Assess. lnt. J. 2:193–206.CrossRefGoogle Scholar
  78. Snell T.W. and Janssen C.R. 1995. Rotifers in ecotoxicology: a review. Hydrobiologia (in press).Google Scholar
  79. Snell T.W. and Janssen C.R. 1998. Microscale toxicity testing with rotifers. In: Microscale Testing in Aquatic Toxicology, advances, techniques and practice, Wells, P.G., Lee, K., Blaise, C. (Eds.), CRC Publishers, pp. 409–422.Google Scholar
  80. Snell T.W., Moffat B.D., Janssen C. and Persoone G. 1991. Acute toxicity tests using rotifers. IV. Effects of cyst age, temperature and salinity on the sensitivity of Brachionus calyciflorus. Ecotox. Environ. Saf. 21: 308–317.CrossRefGoogle Scholar
  81. Snell T.W. and Persoone G. 1989. Acute toxicity bioassays using rotifers. II. A freshwater test with Brachionus rubens. Aquat.Tox. 14: 81–92.CrossRefGoogle Scholar
  82. St-Laurent D., Blaise C., Mc Quarrie P., Scroggins R. and Trottier B. 1992. Comparative assessment of herbicide phytotoxicity to Selenastrum capricornutum using microplate and flask bioassay procedures. Environ. Toxicol Water Qual. 7: 35–48.CrossRefGoogle Scholar
  83. Tebo L.B. 1995. Technical considerations related to the regulatory use of multispecies toxicity tests, In: Multispecies Toxicity Testing, Cairns, J. Jr., Pergamon Press, New York, USA, pp. 19–26.Google Scholar
  84. Toussaint M.W., Shedd T.R., Van der Schalie W.H. and Leather G.R. 1995. A comparison of standard acute toxicity tests with rapid screening toxicity tests. Envirn. Toxicol. Chem. 14: 907–915.CrossRefGoogle Scholar
  85. Van der Wielen C., Persoone G., Goyvaerts M.P., Neven B. and Quaghebeur D. 1993. Toxicity of the effluents of three pharmaceutical companies, as assessed with a battery of tests. Tribune de l’Eau, 46: 19–28.Google Scholar
  86. Vangheluwe M., Janssen C.R. and Persoone G. 1995 Sediment toxicity screening with cost-effective microbiotests and conventional assays: a comparative study. Second SETAC World Congress—Abstract book, Society of Environmental Toxicology and Chemistry Press, Pensacola, USA, p. 23.Google Scholar
  87. Willemsen A., Vaal M.A. and de Zwart D. 1995. Microbiotests as tools for environmental monitoring, National Institute of Public Health and Environmental Planning (RIVM), The Netherlands, report No 9, 607042005, pp. 39.Google Scholar
  88. Wren M.J. and McCaroll D. 1990. A simple and sensitive bioassay for the detection of toxic materials using a unicellular green alga. Environ. Pollut. 64: 87–91.CrossRefGoogle Scholar
  89. Xu H., Dutka B.J. and Kwan K.K. 1987. Genotoxicity studies on sediments using a modified SOS Chromotest. Tox. Assess. Int. J. 2: 79–88.CrossRefGoogle Scholar
  90. Xu H., Dutka B.J. and Schurr K. 1989. Microtitration SOS chromotest: a new approach in genotoxicity testing. Tox. Assess. Int. J. 4: 105–114.CrossRefGoogle Scholar
  91. Xu H. and Dutka B.J. 1987. ATP-TOX system: a new, rapid, sensitive bacterial toxicity screening system based on the determination of ATP. Tox. Assess. Int. J. 2: 149–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • C. R. Janssen
    • 1
  • M. Vangheluwe
    • 2
  • P. Van Sprang
    • 2
  1. 1.Laboratory for Environmental Toxicology and Aquatic EcologyUniversity of GhentGhentBelgium
  2. 2.EURAS, LovendegemBelgium

Personalised recommendations