Mechanical Properties of Titin Isoforms

  • Henk Granzier
  • Michiel Helmes
  • Olivier Cazorla
  • Mark McNabb
  • Dietmar Labeit
  • Yiming Wu
  • Rob Yamasaki
  • Alka Redkar
  • Miklós Kellermayer
  • Siegfried Labeit
  • Karoly Trombitás
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

Titin is a giant filamentous polypeptide of multi-domain construction spanning between the Z- and M-lines of the sarcomere. As a result of differential splicing, length variants of titin are expressed in different skeletal and cardiac muscles. Here we first briefly review some of our previous work that has revealed that titin develops force in sarcomeres either stretched beyond their slack length (passive force) or shortened to below the slack length (restoring force) and that titin’s force underlies a large fraction of the diastolic force of cardiac muscle. Next we present our mechanical and immunoelectron microscopical (IEM) studies of skeletal and cardiac muscles that express titin isoforms. The previously deduced molecular properties of titin were used to model titin’s extensible region in the sarcomere as serially linked WLCs: rigid segments (containing folded Ig/Fn domains) and more flexible segments (PEVK segment). The model was tested on skeletal muscle fibers that express titin isoforms with tandem Ig and PEVK length variants. The model adequately predicts titin’s behavior along a wide sarcomere length range in skeletal muscle, but at long sarcome lengths (SLs), predicted forces are much higher than those determined experimentally. IEM reveals that this may result from Ig domain unfolding. Experiments were also performed on cardiac myocytes from mouse and cow that express predominantly a small cardiac titin isoform (N2B titin) or a large isoform (N2BA titin), respectively. The passive tension-SL relation of myocytes was found to increase more steeply with SL in mouse than in cow. IEM revealed an additional source of extensibility within both of these cardiac titins: the unique N2B sequence (absent in skeletal muscle). Furthermore, the PEVK segment of the N2BA isoform extended to a maximal length of ~ 200 nm, as opposed to ~60 nm for the N2B isoform. We propose that, along the physiological SL range, the long PEVK segment found in N2BA titins results in a low PEVK fractional extension and that this underlies the lower passive tensions of N2BA-expressing cow myocytes.

Keywords

Citrate Electrophoresis Proline Lysine Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Trombitás K, Labeit S, Granzier H. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 2000;26:59–67.CrossRefGoogle Scholar
  2. Granzier H, Helmes M, Trombitás K. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 1996;70(1):430–442.CrossRefGoogle Scholar
  3. Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73(4):2043–2053.PubMedCrossRefGoogle Scholar
  4. Granzier HLM, Wang KW. Interplay between passive pension and strong and weak binding cross-bridges in insect indirect flight muscle. J Gen Physiol 1993;101:235–270.PubMedCrossRefGoogle Scholar
  5. Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68(3):1027–1044.PubMedCrossRefGoogle Scholar
  6. Granzier HL, Wang K. Gel electrophoresis of giant proteins: solubilization and silver-staining of titin and nebulin from single muscle fiber segments. Electrophoresis 1993a;14(1-2):56–64.PubMedCrossRefGoogle Scholar
  7. Granzier HL, Wang K. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 1993b;65(5):2141–59.PubMedCrossRefGoogle Scholar
  8. Gregorio C, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Current Opinion in Cell Biology 1999;11(11):18–25.PubMedCrossRefGoogle Scholar
  9. Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke A, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Cir Res 1999;84:1139–1352.CrossRefGoogle Scholar
  10. Helmes M, Trombitás K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res 1996;79(3):619–626.PubMedCrossRefGoogle Scholar
  11. Hofmann PA, Hartzell HC, Moss RL. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 1991;97:1141–1163.PubMedCrossRefGoogle Scholar
  12. Hu DH, Kimura SK, Maruyama M. Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem 1986;99:1485–1492.PubMedGoogle Scholar
  13. Jin J-P. Cloned rat cardiac titin class I and class II motifs. J Biol Chem 1995;270(12):6908–6916.PubMedGoogle Scholar
  14. Kellermayer MS, Smith SB, Granzier HL, Bustamante C. (1997). Folding-unfolding transitions in single titin molecules characterized with laser tweezers [see comments] [published erratum appears in Science 1997 Aug 22; 277(5329):1117]. Science 1997;276(5315):1112–6.PubMedCrossRefGoogle Scholar
  15. Kellermayer MSZ, Smith SB, Bustamante C, Granzier HL. Complete unfolding of the titin molecule under external force. J Struct Biol 1998;122:197–205.PubMedCrossRefGoogle Scholar
  16. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270(52-34):293–296.PubMedCrossRefGoogle Scholar
  17. Labeit S, Kolmerer B, Linke WA. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 1997;80(2):290–294.PubMedCrossRefGoogle Scholar
  18. Labeit S, Kolmerer B. The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 1995;248(2):308–15.PubMedGoogle Scholar
  19. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261(1)62–71.PubMedCrossRefGoogle Scholar
  20. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M. Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 1997;73(2):905–19.PubMedCrossRefGoogle Scholar
  21. Linke WA, Ivemeyer M, Mündel P, Stockmeier MR, Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 1998a;95(14):8052-8057.Google Scholar
  22. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mündel P. Characterizing titin’s I-band IG dom ain region as an entropic spring. J Cell Science 1998b;111(11):1567–1574.PubMedGoogle Scholar
  23. Linke W, Rudy D, Centner T, Gautel M, Witt C, Labeit S, Gregorio C. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;146:631–644.PubMedCrossRefGoogle Scholar
  24. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11(5):341–345.PubMedGoogle Scholar
  25. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988;9:255–262.PubMedCrossRefGoogle Scholar
  26. Trinick J. Titin as a scaffold and spring. Cytoskeleton. Curr Biol 1996;6(3):258–260.PubMedCrossRefGoogle Scholar
  27. Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 1997;273(2Pt 1):C662–70.Google Scholar
  28. Trombitás K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 1998a;122:188–196.PubMedCrossRefGoogle Scholar
  29. Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998b;140(4):853–859.PubMedCrossRefGoogle Scholar
  30. Trombitás K, Jin JP, Granzier H. The mechanically active domain of titin in cardiac muscle. Circ Res 1995;77(4):856–61.PubMedCrossRefGoogle Scholar
  31. Trombitás K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissection of N2B cardiac titin’s extensibility. Biophysical 1999;77:3189–3196.CrossRefGoogle Scholar
  32. Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys J 1996;33:123–134.CrossRefGoogle Scholar
  33. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 1991;88(16):7101–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Henk Granzier
    • 1
  • Michiel Helmes
    • 1
  • Olivier Cazorla
    • 1
  • Mark McNabb
    • 1
  • Dietmar Labeit
    • 2
  • Yiming Wu
    • 1
  • Rob Yamasaki
    • 1
  • Alka Redkar
    • 1
  • Miklós Kellermayer
    • 3
  • Siegfried Labeit
    • 2
  • Karoly Trombitás
    • 1
  1. 1.Department of Veterinary and Comparative Anatomy, Pharmacology and PhysiologyWashington State UniversityPullmanUSA
  2. 2.Department of Anesthesiology and Intensive Operative MedicineUniversity Hospital Mannheim, Mannheim, Germany and European Molecular Biology LaboratoryHeidelbergGermany
  3. 3.Department of BiophysicsPécs University Medical SchoolPécsHungary

Personalised recommendations