Extensibility in the Titin Molecule and its Relation to Muscle Elasticity

  • Larissa Tskhovrebova
  • John Trinick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)


Studies of the origins of muscle passive tension have revealed a direct relationship between elasticity and the mechanical properties of the titin molecule. ‘Molecular combing’ has made it possible to visualize with high resolution changes in the configuration and structure of isolated titin caused by mechanical forces. The differential extensibility seen in individual molecules is consistent with the important role suggested for the PEVK-region in muscle elasticity. An additional factor emphasizing compliance of this part of the molecule in muscle may relate to the arrangement of the titin filament system in the sarcomere, in particular to titin interactions with thick and thin filaments. The branching of titin network near the PEVK-region suggests that, in addition to conferring extensibility, it may also be important in facilitating the transition of titin intermolecular interactions between the arrays of thick and thin filaments.


Thin Filament Thick Filament Titin Molecule Muscle Elasticity Elastic Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM. Mechanical and chemical unfolding of a single protein: a comparison. Proc Nat Acad Sci USA 1999;96:3694–3699.PubMedCrossRefGoogle Scholar
  2. Erickson HP. Reversible unfolding of fibronectin type-Ill and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Nat Acad Sci USA 1994;91:10114–10118.PubMedCrossRefGoogle Scholar
  3. Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioko T, Maruyama K, Tsukita S. Elastic filaments in situ in cardiac-muscle — deep-etch replica analysis in combination with selective removal of actin and myosin-filaments. J Cell Biol 1993;120:711–724.PubMedCrossRefGoogle Scholar
  4. Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map often nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–1572.PubMedCrossRefGoogle Scholar
  5. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals 2 different mechanisms acting in series. FEBS Lett 1996;385:11–14.PubMedCrossRefGoogle Scholar
  6. Granzier H, Helmes M, Trombitás K. Nonuniform elasticity of titin in cardiac myocytes — a study using immunoelectron microscopy and cellular mechanics. Biophys J 1996;70:430–442.PubMedCrossRefGoogle Scholar
  7. Helmes M, Trombitás K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res 1996,79:619–626.PubMedCrossRefGoogle Scholar
  8. Houmeida A, Holt J, Tskhovrebova L, Trinick J. Studies of the interaction between titin and myosin. J Cell Biol 1995;131:1471–1481.PubMedCrossRefGoogle Scholar
  9. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1112–1116.PubMedCrossRefGoogle Scholar
  10. Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J 1992;11:1711–1716.PubMedGoogle Scholar
  11. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.PubMedCrossRefGoogle Scholar
  12. Linke WA, Bartoo ML, Ivemeyer M, Pollack GH. Limits of titin extension in single cardiac myofibrils. J Muse Res Cell Motil 1996a;17:425–438.CrossRefGoogle Scholar
  13. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M. Actin-titin interaction in cardiac myofibrils: Probing a physiological role. Biophys J 1997;73:905–919.PubMedCrossRefGoogle Scholar
  14. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996b;261:62–71.PubMedCrossRefGoogle Scholar
  15. Maruyama K, Itoh Y, Arisaka F. Circular dichroism spectra show abundance of β-structure in connectin, a muscle elastic protein. FEBS Lett 1986,202:353–355.PubMedCrossRefGoogle Scholar
  16. Murray AJ, Lewis SJ, Barclay AN, Brady RL. One sequence, 2 folds — a metastable structure of Cd2. Proc Nat Acad Sci USA 1995;92:7337–7341.PubMedCrossRefGoogle Scholar
  17. Nave R, Furst DO, Weber K. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M-band anchoring domain. J Cell Biol 1989;109:2177–2187.CrossRefGoogle Scholar
  18. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997;276:1109–1112.PubMedCrossRefGoogle Scholar
  19. Soteriou A, Clarke A, Martin S, Trinick J. Titin elasticity and folding energy. Proc Roy Soc Lond B 1993a;254:83–86.CrossRefGoogle Scholar
  20. Soteriou A, Gamage M, Trinick J. A survey of the interactions made by titin. J Cell Sci 1993b;14:119–123.Google Scholar
  21. Trinick J. End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J mol biol 1981;151:309–314.PubMedCrossRefGoogle Scholar
  22. Trinick J, Knight P, Whiting A. Purification and properties of native titin. J Mol Biol 1984;180:331–356.PubMedCrossRefGoogle Scholar
  23. Trombitás K, Greaser ML, Pollack GH. Interaction between titin and thin filaments in intact cardiac muscle. J Musc Res Cell Motil 1997;18:345–351.CrossRefGoogle Scholar
  24. Tskhovrebova L, Trinick J. Direct visualization of extensibility in isolated titin molecules. J Mol Biol 1991,265:100–106.CrossRefGoogle Scholar
  25. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997;387:308–312.PubMedCrossRefGoogle Scholar
  26. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 1993;64:1161–1177.PubMedCrossRefGoogle Scholar
  27. Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205:263–268.PubMedCrossRefGoogle Scholar
  28. Yang P, Tameyasu T, Pollack GH. Stepwise dynamics of connecting filaments measured in single myofibrillar sarcomeres. Biophys J 1998;74:1473–1483.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Larissa Tskhovrebova
    • 1
  • John Trinick
    • 2
  1. 1.Institute of Theoretical and Experimental BiophysicsPushchinoRussia
  2. 2.School of Biomedical SciencesUniversity of LeedsLeedsUK

Personalised recommendations