Advertisement

Total Ionization Cross Sections for Electron Scattering from Atomic and Molecular Targets Using Quantum Mechanical Semi-Empirical Approach from Threshold to 400 eV

  • K. L. Baluja

Abstract

Total ionization cross sections (σion) by electron impact are presented for a large class of atoms and molecules from the ionization threshold to the intermediate energy region where experimental data are available. A spherical complex optical potential (SCOP), averaged over all molecular orientations, is treated exactly in partial-wave analysis to yield elastic (σel), absorption (σabs) and total (σt) cross sections. The imaginary part of the SCOP takes into account the loss of flux due to inelastic (mainly the ionization) processes and yield the (σabs) quantity. We use σion(E) = p σabs(E) to determine the σion at an energy E, where p is a scaling factor for the corresponding target. In general, p is less than one and reflects the fraction of ionization cross section in the total inelastic channel. The SCOP term for each target is determined ab initio from target wavefunctions at the Hartree-Fock level. In particular, we present results on the σion for He, Ne, Ar, Kr, Xe, H2, N2, O2, F2, CO, NO, H20, H2S, CO2, N2O, NH3, C2H2, CH4, SiH4 and CF4 systems.

Keywords

Total Ionization Optical Potential Ionization Cross Section Ionization Threshold Inelastic Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Wannier Phys. Rev. 90, 817 (1953).ADSMATHCrossRefGoogle Scholar
  2. 2.
    J. J. Thompson, Phil. Mag. 23, 449 (1912).CrossRefGoogle Scholar
  3. 3.
    Electron Impact Ionization”, edited by T. D. Mark and G. H. Dunn (Springer-Verlag, NY 1985)Google Scholar
  4. 4.
    H. Tawara and T. Kato, At. Data Nucl. Data Tables, 36, 167 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    Ce Ma, M. R. Bruce and R. A. Bonham, Phys. Rev. A 44, 2921 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    K. Stephan, H. Deutsch and T. D, Mark, J. Chem. Phys., 83, 5712 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    O. J. Orient and S. K. Srivastava, J. Phys. B 20, 3923 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    S. K. Srivastava and H. P. Nguyen, JPL Publications 87–2 (1987).Google Scholar
  9. 9.
    N. L. Djuric, I. M. Cadez and M. V. Kurepa, Int. J. Mass Spectrom. Ion Process, 83, R7 (1988).CrossRefGoogle Scholar
  10. 10.
    M. V. V. S. Rao, S. K. Srivastava, XVII ICPEAC, book of Abstracts (Brisbane, Australia 10–16 July, 1991 ) p. 254, 257.Google Scholar
  11. 11.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    R. C. Wetzel, F. A. Baiocchi, T. R. Hayes and R. S. Freund, Phys. Rev. A 35, 559 (1987); T. R. Hayes, R. C. Wetzel and R. S. Freund, Phys. Rev. A 35, 578 (1987); J. Chem. Phys., 88, 823 (1988); J. Chem. Phys., 89, 4035, 4042 (1988)Google Scholar
  13. 13.
    D. K. Jain and S. P. Khare, J. Phys. B9, 1429 (1976).ADSGoogle Scholar
  14. 14.
    S. P. Khare and W. J. Meath, J. Phys. B 20, 2101 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    D. Margreiter, H. Deutsch, M. Schmidt and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 100, 157 (1990) and references therein.Google Scholar
  16. 16.
    D. Margreiter, H. Deutsch and T. D. Mark, Contrib. Plasma Phys. 30, 487 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    H. Deutsch and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 79, R1 (1987).CrossRefGoogle Scholar
  18. 18.
    H. Deutsch, P. Scheier and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 74, 81 (1986).CrossRefGoogle Scholar
  19. 19.
    A. Jain, Phys. Rev. A 34, 3707 (1986); J. Chem. Phys. 86, 1289 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    A. Jain, J. Phys. B 22, 905 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    A. Jain and K. L. Baluja, Phys. Rev. A 45, 202 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    C. J. Joachain, “Quantum Collision Theory”, (North Holland, NY)Google Scholar
  23. 23.
    F. W. Byron and C. J. Joachain, Jr., Phys. Rev. A 15, 128 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    F. A. Gianturco and D. G. Thompson, Chem. Phys. Lett. 14, 110 (1976).Google Scholar
  25. 25.
    F. A. Gianturco and A. Jain, Phys. Rep. 143, 347 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    S. Hara, J. Phys. Soc. Japan, 22, 710 (1967).CrossRefGoogle Scholar
  27. 27.
    J. K. O’Connel and N. F. Lane, Phys. Rev. A 27, 1893 (1983); N. T. Padial and D. W. Norcross, Phys. Rev. A 29, 1742 (1984); F. A. Gianturco, A. Jain and L. C. Pantano, J. Phys. B 20, 571 (1987).Google Scholar
  28. 28.
    Froese-Fischer. C, “The Hartree-Fock Method for Atoms”, (Wiley, New York, 1977); Jain A, B. Etemadi and K. R. Karim, Physica Scripta 41 321 (1990); F. Salvat, J. D. Martinez, R. Mayol and J Parellada, Phys. Rev. A 36, 467 (1987).Google Scholar
  29. 29.
    M. A. Morrison, Comp. Phys. Commun.21, 63 (1980); L. A. Collins, D. W. Norcross and G. B. Schmid, Comp. Phys. Commun., 21, 79 (1980); A. D. McLean and M. Yoshmine, Int. J Quant. Chem. 1S, 313 (1967); P E Cade and A C Wahl, At. Data. Nuc.data Tables, 13 339 (1974); P. E. Cade and W. M. Hup, At. Data and Nuc. Data Tables, 15, 2 (1975); for polyatomic targets, F. A. Gianturco, D. G. Thompson and A. Jain (private communication)Google Scholar
  30. 30.
    G. Statszewska, D. W. Schwenke, D. Thirumalai and D. G. Truhlar, J. Phys.B 16, L281(1983); Phys. Rev. A 28, 2740 (1983); G. Statszewska, D. W. Schwenke, and D. G. Truhlar, J. Chem. Phys. 81, 335 (1984); Phys. Rev. A 29, 3078 (1984).Google Scholar
  31. 31.
    A. Gaudin and R. Hagemann, J. Chem. Phys., 64, 1209 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • K. L. Baluja
    • 1
  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations