Skip to main content

Inner Shell Ionization Processes

  • Chapter
Trends in Atomic and Molecular Physics
  • 191 Accesses

Abstract

In this paper I would like to consider some aspects of electron impact ionization from atomic inner shells. I will be particularly interested in the theoretical understanding of coincidence measurements, i.e. the (e, 2e) process. Fundamentally an (e, 2e) experiment is one where an electron, of well-defined energy and momentum, is fired at a target, ionizes it and the two exiting electrons are detected in coincidence. The energies and positions in space of these electrons are determined by the experiment so in effect all but the spin quantum numbers are then known. We can, therefore, describe it as a kinematically complete experiment; if we could also measure all the spins we would have all the information on a scattering experiment that quantum mechanics will allow. The technique offers both the possibility of a direct determination of the target wavefunction and profound insights into the nature of few body interactions. What information you extract from such an experiment really depends on the kinematics you choose and the target you use. Integrated cross sections can be crude things and you need the full power of a highly differential measurement to tease out the delicacies of the interactions. Indeed often the most intriguing effects turn up in peculiar geometries where the cross sections are small and where a number of relatively subtle few body interactions are at play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Pinkás, M. A. Coplan, J. H. Moore, S. Jones, D. H. Madison, J. Rasch, C. T. Whelan, R. J. Allan and H. R. J. Walters in New Directions in Atomic Physics, edited by C. T. Whelan, R. M. Dreizler, J. H. Macek and H. R. J. Walters, Plenum (1999).

    Google Scholar 

  2. G. Stefani in New Directions in Atomic Physics, edited by C. T. Whelan, R. M. Dreizler, J. H. Macek and H. R. J. Walters, Plenum (1999).

    Google Scholar 

  3. A. Pochat, R. J. Tweed, J. Peresse, C. J. Joachain, B. Piraux and F. W. Byron, Jr., J. Phys. B 16, L775 (1983).

    Article  ADS  Google Scholar 

  4. C. T. Whelan and H. R. J. Walters, J. Phys. B. 23, 2989 (1990).

    Article  ADS  Google Scholar 

  5. X. Zhang, C. T. Whelan and H. R. J. Walters, J. Phys. B 23, L509 (1990).

    Article  ADS  Google Scholar 

  6. E. Clementi and C. Roetti, At. Data and Nucl. Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

  7. T. Rösel, C. Dupré, J. Röder, A. Duguet, K. Jung, A. Lahamam-Bennani and H. Ehrhardt, J. Phys. B 24, 3059 (1991).

    Article  ADS  Google Scholar 

  8. L. Frost, P. Freienstein and M. Wagner, J. Phys. B 23, L715 (1990).

    Article  ADS  Google Scholar 

  9. C. T. Whelan, R. J. Allan, H. R. J. Walters, X. Zhang in (e, 2e) & related processes, edited by C. T. Whelan, H. R. J. Walters, A. Lahmam-Bennani and H. Ehrhardt, Kluwer, Dordrecht, 1–32 (1993).

    Google Scholar 

  10. C. T. Whelan, R. J. Allan, J. Rasch, H. R. J. Walters, X. Zhang, J. Röder, K. Jung and H. Ehrhardt, Phys. Rev. A 50, 4394 (1994). See also J. Rasch, PhD. thesis, University of Cambridge (1996).

    Google Scholar 

  11. C. T. Whelan, R. J. Allan, J. Rasch, H. R. J. Walters, X. Zhang, J. Röder, K. Jung and H. Ehrhardt, Phys. Rev. A 50, 4394 (1994). See also J. Rasch, PhD. thesis, University of Cambridge (1996).

    Google Scholar 

  12. J. Rasch and C. T. Whelan in New Directions in Atomic Physics, edited by C. T. Whelan, R. M. Dreizler, J. H. Macek and H. R. J. Walters, Plenum (1999).

    Google Scholar 

  13. A. Lahmam-Bennani, H. F. Wellenstein, A. Duguet and A. Daod, Phys. Rev. A 30, 1511 (1984).

    Article  ADS  Google Scholar 

  14. G. Sefani, L. Avaldi, A. Lahmam-Bennani and A. Duguet, J. Phys. B 19, 3787 (1986).

    Article  ADS  Google Scholar 

  15. P. Bickert, W. Hink, C. Dal Cappello and A. Lahmam-Bennani, J. Phys. B 24, 4603 (1991).

    Article  ADS  Google Scholar 

  16. P. Bickert, W. Hink and S. Schönberger, Proc. 17th ICPEAC, Brisbane, edited I. E. McCarthy, W. R. Mac Gillivray and M. C. Standage (Brisbane: Griffith University) Abstracts, p180 (1991).

    Google Scholar 

  17. T. Rösel, K. Jung, H. Ehrhardt, X. Zhang, C. T. Whelan and H. R. J. Walters, J. Phys. B 23, L649 (1990).

    Article  Google Scholar 

  18. C. Dal Cappello, C. Tavard, A. Lahmam-Bennani and M. C. Dal Cappello, J. Phys. B 17, 4557 (1990).

    Article  Google Scholar 

  19. A. N. Grum-Grzhimailo, J. Phys. B 18, L695 (1985).

    Article  ADS  Google Scholar 

  20. M. J. Brothers and R. A. Bonham, J. Phys. B 19, 3801 (1986).

    Article  ADS  Google Scholar 

  21. X. Zhang, C. T. Whelan, H. R. J. Walters, R. J. Allan, P. Bickert, W. Hink and S. Schönberger, J. Phys. B 25, 4325 (1992).

    Article  ADS  Google Scholar 

  22. C. T. Whelan, H. R. J. Walters, J. Hanssen and R. M. Dreizler, Aust. J. Phys. 44, 39 (1993).

    ADS  Google Scholar 

  23. F. W. Byron, Jr., C. J. Joachain and B. Piraux, J. Phys. B 19, 1201 (1986).

    Article  ADS  Google Scholar 

  24. H. R. J. Walters, X. Zhang and C. T. Whelan, in Whelan et al edited, (e, 2e) & related processes, Kluwer, Dordrecht, 33–74 (1993).

    Google Scholar 

  25. E. Schüle and W. Nakel, J. Phys. B 15, L639 (1982).

    Article  ADS  Google Scholar 

  26. H-Th. Prinz, K.-H. Besch and W. Nakel, Phys. Rev. Lett. 74, 243 (1995).

    Article  ADS  Google Scholar 

  27. I. E. McCarthy and E. Weigold, Rep. Prog. Phys. 54, 789 (1991).

    Article  ADS  Google Scholar 

  28. F. Bell, J. Phys. B 22, 287 (1989).

    Article  ADS  Google Scholar 

  29. S. Keller and C. T. Whelan, J. Phys. B 27, L771 (1994).

    Article  ADS  Google Scholar 

  30. J. N. Das and A. N. Konar, J. Phys. B 7, 2417 (1974).

    Article  ADS  Google Scholar 

  31. M. E. Rose, Relativistic Electron Theory, John Wiley, New York (1961).

    Google Scholar 

  32. D. H. Jakubaßa-Amundsen, Z. Phys. D 11, 305 (1989).

    Google Scholar 

  33. D. H. Jakubaßa-amundsen, J. Phys. B 25, 1297 (1992).

    Article  ADS  Google Scholar 

  34. H. R. J. Walters, H. Ast, C. T. Whelan, R. M. Dreizler, H. Graf, C. D. Schröter, J. Bonfert and W. Nakel, Z. Phys. D 23, 353 (1992).

    Article  ADS  Google Scholar 

  35. H. R. J. Walters, H. Ast, C. T. Whelan, R. M. Dreizler, H. Graf, C. D. Schröter, J. Bonfert and W. Nakel, Z. Phys. D 23, 353 (1992).

    Article  ADS  Google Scholar 

  36. J. Bonfert, H. Graf and W. Nakel, J. Phys. B 24, 1423 (1991).

    Article  ADS  Google Scholar 

  37. I. Fuss, J. Mitroy and B. M. Spicer, J. Phys. B 15, 3321 (1982).

    Article  ADS  Google Scholar 

  38. A. Cavalli and L. Avaldi, Nouovo Cimento Soc. Ital. Fis. D 16, 1 (1994).

    Article  Google Scholar 

  39. H. Ast, S. Keller, R. M. Dreizler, C. T. Whelan, L. U. Ancarani and H. R. J. Walters, J. Phys. B 29, L585 (1996).

    Article  ADS  Google Scholar 

  40. H. Ehrhardt, K. Jung, g. Knoth and P. Schlemmer, Z. Phys. D 1, 3 (1986).

    Article  ADS  Google Scholar 

  41. H. Klar, A. C. Roy, P. Schlemmer, K. Jung and H. Ehrhardt, J. Phys. B 20, 821 (1987).

    Article  ADS  Google Scholar 

  42. E. P. Curran and H. R. J. Walters, J. Phys. B 20, 337 (1987).

    Article  ADS  Google Scholar 

  43. J. C. Slater, Phys. Rev. 36, 57 (1930).

    Article  ADS  MATH  Google Scholar 

  44. L. U. Ancarani, S. Keller, H. Ast, C. T. Whelan, H. R. J. Walters and R. M. Dreizler, J. Phys. B 31, 845 (1998).

    Article  Google Scholar 

  45. F. Mota Furtado and P. F. O’Mahoney, J. Phys. B 22, 2989 (1989).

    Article  Google Scholar 

  46. S. Keller, R. M. Dreizler, L. U. Ancarani, H. R. J. Walters, H. Ast and C. T. Whelan, Z. Phys. D 37, 191 (1996).

    Article  ADS  Google Scholar 

  47. H. Ast, S. Keller, C. T. Whelan, H. R. J. Walters and R. M. Dreizler, Phys. Rev. 50, R1 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whelan, C.T. (2000). Inner Shell Ionization Processes. In: Sud, K.K., Upadhyaya, U.N. (eds) Trends in Atomic and Molecular Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4259-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4259-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6912-7

  • Online ISBN: 978-1-4615-4259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics