Advertisement

Low Energy Photoionization in the Ar Isoelectronic Sequence: Complex Effects of Z

  • H. S. Chakraborty
  • P. C. Deshmukh
  • S. T. Manson

Abstract

Valence 3p photoionization of neutral Ar and several ions isoelectronic to it is investigated in the low photon-energy regime using the relativistic-random-phase approximation. With increasing Z, a steady shift of “Cooper minimum” towards the ionization threshold is seen in the cross section such that at sufficiently high Z it crosses the threshold to enter the discrete of 3p channel. Further, a remarkable threshold feature is observed for some ions that essentially originates from strong Z-dependent interaction with inner 3s photoexcitation series. Results strengthen our previous caution against any indiscriminate interpolation (or extrapolation) of ionic data at low energies.

Keywords

Ionization Threshold Isoelectronic Sequence Cooper Minimum Atomic Photoionization Steady Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Bethe and E. E. Salpeter, Quantum Mechantcs of One- and Two-Electron Atoms, Springer-Verlag, Berlin, p. 248ff (1958).Google Scholar
  2. 2.
    R. F. Reilman and S. T. Manson, Astrophys. J. Supp. 40, 815 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    C. Mendoza, Phys. Scripta T65, 198 (1996).CrossRefGoogle Scholar
  4. 4.
    V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992); Electron Spectrometry of Atoms Using Synchrotron Radiation, Cambridge University Press, New York (1997).Google Scholar
  5. 5.
    B. Sonntag and P. Zimmermann, Rep. Prog. Phys. 55, 911 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ya Amusia, Atomic Photoeffect, Plenum Press, New York (1990).Google Scholar
  7. 7.
    E. B. Saloman, J. H. Hubbell, and J. H. Scofield, At. Data Nucl. Data Tables 38, 1 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    J. C. Raymond, Proceedings of NASA Laboratory Space Science Workshop, Harvard-Smithsonian Center for Astrophysics, April 1–3, p. 1 (1998).Google Scholar
  9. 9.
    A. K. Pradhan, Phys. Scripta 35, 840 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    H. S. Chakraborty, P. C. Deshmukh, E. W. B. Dias, and S. T. Manson, Submitted to J. Phys. B.Google Scholar
  11. 11.
    P. C. Deshmukh, H. S. Chakraborty, E. W. B. Dias, and S. T. Manson, published in this proceeding.Google Scholar
  12. 12.
    H. S. Chakraborty, P. C. Deshmukh, and S. T. Manson, Pramana-J. Phys. 6, 607 (1998); S. T. Manson, Z. Altun, H. S. Chakraborty, E. W. B. Dias, P. C. Deshmukh, and C. S. Turner, Atomic Processes in Plasmas, Ed. E. Oks and M. S. Pindzola, AIP, New York, p. 19 (1998); H. S. Chakraborty, P. C. Deshmukh, S. T. Manson, A. Gray, and E. T. Kennedy, to be submitted to Phys. Rev. Lett.Google Scholar
  13. 13.
    W. R. Johnson and C. D. Lin, Phys. Rev. A 20, 964 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    W. R. Johnson, C. D. Lin, K. T. Cheng, and C. M. Lee, Phys. Scripta 21, 409 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy, Academic Press, New York, p. 45 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • H. S. Chakraborty
    • 1
  • P. C. Deshmukh
    • 1
  • S. T. Manson
    • 2
  1. 1.Department of PhysicsIndian Institute of Technology — MadrasChennaiIndia
  2. 2.Department of Physics and AstronomyGeorgia State UniversityAtlantaUSA

Personalised recommendations