Neutral Atom Traps for Bose-Einstein Condensation

  • B. N. Jagatap
  • A. P. Marathe
  • K. G. Manohar
  • R. C. Sethi
  • S. A. Ahmad

Abstract

Optical and magnetic trapping of neutral atoms, to produce ultracold and dense samples of atomic vapours, is a new phenomenon in physics that has potential for use in many areas of research. Observation of Bose-Einstein condensation (BEC) in dilute vapours of alkali atoms [1–4] is one of the fascinating applications of these atomic trapping and cooling techniques. For BEC, one must produce a sample of bosonic particles whose thermal de Broglie wavelength exceeds the mean inter-atomic separation. Under this situation the Bose statistics favours the condensation of all the atoms into a single quantum state of the system [5]. Clearly such a phase transition can be observed only at ultra low temperatures and relatively high densities of bosonic particles. Fuelled by the search for high densities and very low temperatures of atomic vapours, last few years have seen a flurry of activities in demonstrating a variety of neutral atom traps [6, 7]. These have made it possible to obtain dense samples of atomic systems at unprecedented low temperatures for the observation of the collective quantum effects. Other applications of these neutral atom traps include very high resolution spectroscopy, metrology, nonlinear optics, atom optics and “non-accelerator” particle physics [8].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Drutent, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    C. C. Bradly, C. A. Sackett, J. J. Tollet and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Parkins and D. F. Walls, Phys. Rep. 303, 1 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    K. Huang, Statistical Mechanics, Wiley, New York (1987).Google Scholar
  6. 6.
    T. Bergeman, G. Erez and H. J. Metcalf, Phys. Rev. A35, 1535 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    H. Metcalf and P. van der Straten, Phys. Rep. 244, 203 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    M. Kasevich, K. Moler, E. Riis, E. Sundermann, D. Weiss and S. Chu, At. Phys. 12, 47 (1991); D. N. Stacy, At. Phys. 13, 46 (1993).Google Scholar
  9. 9.
    E. L. Raab, M. Prentiss, A. Cable, S. Chu and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    H. Metcalf, J. Opt. Soc. Am. B6, 2206 (1989).CrossRefGoogle Scholar
  11. 11.
    D. Sesko, T. Walker, C. Monroe, A. Gallaghar and C. Wieman, Phys. Rev. Lett. 63, 961 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    C. Monroe, W. Swann, H. Robinson and C. Wiemann, Phys. Rev. Lett. 65, 1571 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    D. Sesko, T. Walker and C. Wieman, J. Opt. Soc. Am. B8, 946 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    A. M. Stean, M. Chowdhury and C. Foot, J. Opt. Soc. Am. B9, 2142 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    K. E. Gibble, S. Kasapi and S. Chu, Opt. Lett. 17, 526 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    K. Lindquist, M. Stephens and C. Wieman, Phys. Rev. A46, 4082 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    W. Kitterle, K. B. Davis, M. A. Joeffe, A. Martin and D. Pritchard, Phys. Rev. Lett. 70, 2253 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    (a) A. P. Marathe, K. G. Manohar, B. N. Jagatap, S. G. Nakhate, S. A. Ahmad and R. C. Sethi, Design and Development of Spherical Quadrupole Magnetostatic Trapping Fields, Proc. Of DAE Nuclear Physics Symposium, 41B, 394 (1998). (b) B. N. Jagatap, K. G. Manohar, S. G. Nakhate, A. P. Marathe and S. A. Ahmad, Curr. Sci. 76, 207 (1999).Google Scholar
  19. 19.
    M. O. Mewes, M. R. Andrews, N. J. van Druten, O. M. Kurn, D. S. Durfee and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    D. M. Stampr-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inonye, H. J. Miesner, J. Steinger and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    B. N. Jagatap, S. A. Ahmad, U. K. Chatterjee and A. P. Roy, in Seminar on “Physics with Cooled and Trapped Atoms and Ions”, BARC, March 5–6, 1998.Google Scholar
  23. 23.
    J. D. Weinstein, R. de Carvalho, J. Kim, D. Patterson, B. Friedrich and J. M. Doyle, Phys. Rev. A57, R3171 (1998).ADSGoogle Scholar
  24. 24.
    Y. V. Gott, M. S. Ioffe and V. B. Tel’kovskii, Nucl. Fusion, 1962, Suppl. Pt. 3, 1045 (1962).Google Scholar
  25. 25.
    D. E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    See for example, O. Morice, Y. Castin and J. Dalibard, Phys. Rev. A51, 3896 (1995); B. V. Svistunov and G. V. Shlyapnikov, Sov. Phys. JETP 71, 71 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • B. N. Jagatap
    • 1
  • A. P. Marathe
    • 1
  • K. G. Manohar
    • 1
  • R. C. Sethi
    • 2
  • S. A. Ahmad
    • 3
  1. 1.Laser and Plasma Technology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  2. 2.Accelerator and Pulse Power DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  3. 3.Spectroscopy DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations