The Continuum model and G1-control of the mammalian cell cycle

  • Stephen Cooper
Part of the Progress in Cell Cycle Research book series (PCCR)


The continuum model of the mammalian division cycle proposes that there are no Gl-phase specific controls or events. The G1 phase is simply the time when processes begun in the previous cell cycle are completed. In this review, the continuum model is applied the variability of the Gl-phase, the existence of Gl-less cells, the ubiquitous Gl-phase arrest phenomenon, the effect of over-expressed cyclins on Gl-phase length, the statistical variation of the cell cycle, the reports of Gl-phase syntheses, the proposed variation in retinoblastoma protein phosphorylation in Gl-phase, and the myriad findings put forward to support the Gl-control model of the mammalian division cycle. The continuum model is a valid description of the mammalian division cycle.


Continuum Model Restriction Point Mammalian Cell Cycle Mass Synthesis Interdivision Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hatakeyama, M, and Weinberg, R. A. (1995) Prog. Cell Cycle Res. 1, 9–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Helmstetter, C. E., Cooper, S., Pierucci, O. and Revelas, E. (1968) CSH Symp. Quant. Biol. 33, 809–822.CrossRefGoogle Scholar
  3. 3.
    Cooper, S. (1991) Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division CyclesAcademic Press, San Diego, CA.Google Scholar
  4. 4.
    Cooper, S. (1979) Nature 280, 17–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Liskay, R. M. and Prescott, D. M. (1978) Proc. Natl. Acad. Sci. USA 75, 2873–2877.PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper, S. (1981) in Cell Growth, (ed Nicolini, C.) 315–336 ( Plenum Press, New York).Google Scholar
  7. 7.
    Cooper, S. (1998) Exp. Cell Res. 238, 110–115.PubMedCrossRefGoogle Scholar
  8. 8.
    Jiang, W., Kahn, S. M., Shoo, P., Zhang, Y. J., Cacace, A. M., Infante, A. S., Doi, S., Santella, R. M. and Weinstein, I. B. (1993) Oncogene 8, 3447–3457.PubMedGoogle Scholar
  9. 9.
    Musgrove, E. A., Lee, C. S., Buddey, M. F. and Sutherland, R. L. (1994) Proc. Natl. Acad. Sci. USA 91, 8022–8026.PubMedCrossRefGoogle Scholar
  10. 10.
    Ohtsubo, M. and Roberts, J. M. (1993) Science 259, 1908–1912.PubMedCrossRefGoogle Scholar
  11. 11.
    Quelle, D. E., Ashmun, R. A., Shurtleff, S. A., Kato, J., Bar-sagi, D., Roussel, M. F. and Sherr, C. J. (1993) Genes Do. 7, 1559–1571.CrossRefGoogle Scholar
  12. 12.
    Resnitzky, D. Gossen, M. Bujard, H. and Reed. S. I. (1994) Mol. Cell. Bid. 14, 1669–1679.Google Scholar
  13. 13.
    Han, E. K, Sgambato, A., Jiang, W., Zhang, Y, Santella, R.M., Doki, Y., Cacace, A.M., Schieren, I. and Weinstein, I. B. (1995) Oncogene 9, 953–961.Google Scholar
  14. 14.
    Brooks, R. F., Riddle, P. N., Richmond, F. N. and Marsden, J. (1983) Exp. Cell Res. 148, 127–142.PubMedCrossRefGoogle Scholar
  15. 15.
    Pardee, A. B. (1974) Proc. Natl. Acad. Sci. USA 71, 1286–1290.PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper, S. (1987) Bioessays 7, 220–223.PubMedCrossRefGoogle Scholar
  17. 17.
    Cooper, S. (1998) FASEB J. 12, 367–373.PubMedGoogle Scholar
  18. 18.
    Cooper, S. (1998) Cell Prolif 31, 9–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Matteo, G., Fuschi, P., Zerfass, K, Moretti, S., Ricordy, R., Cenciarelli, C., Tripodi, M, Jansen-Dur, P. and Lavia, P. (1995) Cell Growth and Differ. 6, 1213–1224.Google Scholar
  20. 20.
    Cooper, S. (1997) Microb. Comp. Genomics 2, 269–273.PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper, S. (1989) J. Theor. Bid. 135, 393–400.CrossRefGoogle Scholar
  22. 22.
    Kelly, K, Cochran, B., Stiles, C. and Leder, P. in Curr. Topics Micro. Imm (eds Potter, M., Melchers, F. and Weigert, M.) (1984)113,117–126.Google Scholar
  23. 23.
    Thompson, C. B., Challoner, P. B, Neiman, P. E. and Groudine, M. (1985) Nature 314, 363–366.PubMedCrossRefGoogle Scholar
  24. 24.
    Hann, S. R., Thompson, C. B. and. Eisenman, R. N (1985) Nature 314, 366–369.PubMedCrossRefGoogle Scholar
  25. 25.
    Rabbitts, P. H., Watson, J. V., Lamond, A., Forster, A., Stinson, M. A., Evan, G., Fischer, W. Atherton, E., Sheppard, R. and Rabbitts, T. (1985) EMBO J. 4, 2009–2015.PubMedGoogle Scholar
  26. 26.
    Maalae, O. and Hanawalt, P. C. (1961) J. Mol. Biol. 3, 144–155.CrossRefGoogle Scholar
  27. 27.
    Lark, K G. and Renger, H. (1969) J. Mol. Biol. 42, 221–235.PubMedCrossRefGoogle Scholar
  28. 28.
    Messer, W. (1972) J. Bacteriol. 112, 7–12.PubMedGoogle Scholar
  29. 29.
    Cooper, S. (1974) J. Theor. Biol. 46, 117–127.PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper, S. and G. Wuesthoff, (1971) J. Bacteriol. 106, 709–711.PubMedGoogle Scholar
  31. 31.
    Zetterberg, A. and Larsson, O. (1985) Proc. Natl. Acad. Sci. USA 82, 5365–5369.PubMedCrossRefGoogle Scholar
  32. 32.
    Larsson, O. Zetterberg, A. and Engstrom, W. (1985) J. Cell Sci. 75, 259–268.PubMedGoogle Scholar
  33. 33.
    Zetterberg, A. and Larsson, O. (1995) in Cell Cycle Control(Hutchinson, C. and Glover, D. M. eds.) pp. 206–207, Oxford University Press, Oxford, New YorkGoogle Scholar
  34. 34.
    Fantes, P. (1987) Bicessays 7, 223–224.Google Scholar
  35. 35.
    Rao, P. N. and Johnson, R. T. (1970) Nature 225, 159–164.PubMedCrossRefGoogle Scholar
  36. 36.
    Darzynkiewicz, Z. Gong, J., Juan, G., Ardelt, B., and Traganos, F. (1996) Cytometry 25, 1–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Juan, G., Gong, J. Traganos, F. and Darzynkiewicz, Z. (1996) Cell Prolif. 29, 259–266.PubMedCrossRefGoogle Scholar
  38. 38.
    Buchkovich, K, Duffy, L. A., and Harlow, E. (1989) Cell 58, 1097–1105.PubMedCrossRefGoogle Scholar
  39. 39.
    DeCaprio, J. A., Ludlow, J. W., Lynch, D., Furukawa, Y, Giffin, J, Piwinica-Worms, H., Huang, C.-M., and Linvingston, D. M. (1989) Cell 58, 1085–1095.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen, P.-L., Scully, P., Shew, J.-Y., Wang, J. Y. U., and Lee, W.-H. (1989) Cell 58, 1193–1198.PubMedCrossRefGoogle Scholar
  41. 41.
    Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. A. and DeCaprio, J. A. (1990) Cell 60, 387–396.PubMedCrossRefGoogle Scholar
  42. 42.
    DeCaprio, J.A., Furukawa, Y, Aichenbaum, F., Griffin, J.D. and Livingston, D. M. (1992) Proc. Natl. Acad. Sci. USA 89, 1795–1798.PubMedCrossRefGoogle Scholar
  43. 43.
    Mihara, K., Cao, X.R., Yen, A., Chandler, S., Driscoll, B., Murphree, A. L., T’ang, A., and Fung, Y.-K.T. (1989) Science 246, 1300–1303.PubMedCrossRefGoogle Scholar
  44. 44.
    Cooper, S. (1982) J. Theor. Biol. 94, 783–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Cooper, S. (1991) in Proceedings of the 2nd international Conference on Mathematical Population Dynamics. Arino, O. Axelrod, D. E. and Kimmel, M. eds.) pp. 539–546, Marcel Dekker, Inc. New York.Google Scholar
  46. 46.
    Smith, J.A. and Martin, L. (1973) Proc. Natl. Acad. Sci. USA 70, 1263–1267PubMedCrossRefGoogle Scholar
  47. 47.
    Okuda, A. and Cooper, S. (1989) Exp. Cell. Res. 185, 1–7PubMedCrossRefGoogle Scholar
  48. 48.
    M. Guiguet, and S. Cooper. (1982) Biosci. Rep. 2, 91–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Cooper, S. (1997) TIBS 22, 490–494.PubMedGoogle Scholar
  50. 50.
    Cooper, S. (1981) Cell Biol. Int. Rep. 5, 539–551.PubMedCrossRefGoogle Scholar
  51. 51.
    Cooper, S. (1987) J. Theor. Biol. 127, 247–249.PubMedCrossRefGoogle Scholar
  52. 52.
    Cooper, S. (1998) Microbiology 144, 263–266.PubMedCrossRefGoogle Scholar
  53. 53.
    Crick, F. (1988) What mad pursuit. Basic Books.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Stephen Cooper
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations