Advertisement

Molecular Approaches for the Assessment of Microbial Deterioration of Objects of Art

  • Sabine Rölleke
  • Claudia Gurtner
  • Guadalupe Pinar
  • Werner Lubitz

Abstract

One of the most important criteria for the restoration of cultural heritage is the early identification of material deterioration caused by microbial colonization. In order to give guidance to restorers on how and when such restorative efforts are required and to what extent such efforts need to include treatments to stop microbial growth, methods are needed that allow stock taking of microbial communities on the objects of art. It is also important to assess changes in microbial colonization. The present paper describes molecular approaches which allow the monitoring of biodeterioration processes of objects of art, including mural paintings and historical glass.

Key words

biodeterioration DGGE analysis mural paintings historical glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R. I., Ludwig W. and Schleifer, K.-H. 1995. Phylogenetic identification and in situ detection of individual microbioal cells without cultivation. Microbiol. Rev. 59: 143–169.Google Scholar
  2. Baker, D. and O’Keefe, D. 1984. A modified sucrose fractionation procedure for the isolation of Frankiae from actinorhizal root nodules and soil samples. Plant Soil 78: 23–28.CrossRefGoogle Scholar
  3. Bianchi, A., Favali, M. A., Barbieri, N. and Bassi, M. 1980. The use of fungicides on moldcovered frescoes in San Eusebio in Pavia. Int. Biodeter. Bull. 16: 45–51.Google Scholar
  4. Bock, E. and Sand, W. 1993. The microbiology of masonry biodeterioration. J. Appl. Bacteriol. 74: 503–514.Google Scholar
  5. Drewello, R. 1998. Mikrobiell induzierte Korrosion von Silikatglas -unter besonderer Berücksichtigung von Alkali-Erdalkali-Silikatgläsem. Thesis, Universität Erlangen-Nürnberg.Google Scholar
  6. Eppard, M., Krumbein, W. E., Koch, C., Rhiel, E., Stanley, J. T. and Stackebrandt, E.1996.Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch. Microbiol. 166: 12–22.CrossRefGoogle Scholar
  7. Giovannoni, S. J., Britschgi, T. B., Moyer, V. and Field, K. G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.CrossRefGoogle Scholar
  8. Krambein, W. E. 1968. Zur Frage der biologischen Verwitterung: Einfluß der Mikroflora auf die Bausteinverwitterung und ihre Abhängigkeit von edaphischen Faktoren. Z. Allg. Mikrobiol. 8: 107–117.CrossRefGoogle Scholar
  9. KrUrbein, W. E., Urzì, C. and Gehrmann, C. 1991. Biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiol. J. 9: 139–165.CrossRefGoogle Scholar
  10. Larsen, N., Olsen, G. J., Maidak, B. L, McCaughey, M. J., Overbeek, R, Macke, T. J., Marsh T. L. and Woese. C. R 1993. The ribosomal database project. Nucleic Acid Res. 21: 3021–3023.CrossRefGoogle Scholar
  11. Lechevalier, M. P. 1989. Afiinomycetes with multilocular sporangia. In BMSB S. T. William, M. E. Sharpe and J. G. Holt (Eds.), Vol 4. Williams and Wilkins, Baltimore p. 2405–2417.Google Scholar
  12. Mellor, E. 1924. The decay of window glass from the point of view of the lichenous growth. J. Soc. Glass Technol. 8: 182–186.Google Scholar
  13. Muyzer, G., de Waal, E. C. and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.Google Scholar
  14. Pearson, W. R 1990. Rapid and sensitive sequence comparison with FAST and FASTA. Methods Enzymol. 183: 63–98.CrossRefGoogle Scholar
  15. Rölleke, S., Muyzer, G., Wawer, C., Wanner, G. and Lubitz, W. 1996. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 62: 2059–2065.Google Scholar
  16. Rölleke S., Witte A., Wanner G. and Lubitz, W. 1998. Medieval wall paintings: A habitat for Archaea - Identification of Archaea by denaturing gradient gel electrophoresis (DGGE) of PCR- amplified gene fragments coding for 16S rRNA in a medieval wall painting. Int. Biodeter. Biodegr. 41/1: 85–92.Google Scholar
  17. Rölleke, S., Gurtner, C., Drewello, U., Drewello, R., Lubitz, W. and R. Weissmann, R. 1999. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J. Microbiol. Methods 36: 107–114.CrossRefGoogle Scholar
  18. Sorlini, C., Sacchi, M. and Ferrari, A. 1987. Microbiological deterioration of Gambara’s frescos exposed to open air in Brescia, Italy. Internat. Biodet. 23: 167–179.CrossRefGoogle Scholar
  19. Urzì, C., Lisi, S., Crisco, G. and Pernice, A. 1991. Adhesion to and degradation of marble by a Micrococcus strain isolated from it. Geomicrobiol. J. 9: 81–90.CrossRefGoogle Scholar
  20. Ward, D. M., Welle, R and Bateson, M. M. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.CrossRefGoogle Scholar
  21. Weirich G. 1989. Investigations of the microflora of mural paintings. Mater. Organismen 24:139–159.Google Scholar
  22. Williams, S. T. 1985. Streptomycetes in biodeterioration - their relevance, detection and identification. Int. Biodeter. 21: 201–209.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sabine Rölleke
    • 1
  • Claudia Gurtner
    • 1
  • Guadalupe Pinar
    • 1
  • Werner Lubitz
    • 1
  1. 1.Institute of Microbiology and GeneticsUniversity of ViennaViennaAustria

Personalised recommendations