Advertisement

Genomes pp 81-89 | Cite as

Recombination and Human Diversity

  • John A. L. Armour
  • Santos Alonso Alegre
  • Emma J. Rogers
  • Louise J. Williams
  • Sue Miles
  • Richard M. Badge
Part of the Stadler Genetics Symposia Series book series (SGSS)

Abstract

Recombination has classically been viewed as generating diversity by crossing-over between chromosomes, so that new haplotypic combinations are formed. More recently it has become apparent that recombinational mechanisms, and in particular, patches of gene conversion, are active in the generation of new allelic diversity at individual loci. This review will examine work on the role of recombination in generating human diversity, in particular recent analyses of spatial heterogeneity in rates of recombination across the genome, as well as approaches to demonstrating individual or allelic heterogeneity in crossover rates.

Keywords

Gene Conversion Meiotic Recombination Mini Satellite Pentanucleotide Repeat United Kingdom Introduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonarakis, S.E., Boehm, CD., Giardina, P.J.V., and Kazazian, H.H., 1982, Nonrandom association of polymorphic restriction sites in theß-globin gene cluster, Proc Natl Acad.Sci USA 79:137.PubMedCrossRefGoogle Scholar
  2. Armour, J.A.L., Harris, P.C., and Jeffreys, A.J., 1993, Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability, Hum. Mol Genet. 2:1137.PubMedCrossRefGoogle Scholar
  3. Buard, J., and Vergnaud, G., 1994, Complex recombination events at the hypermutable minisatellite CEB1 (D2S90), EMBOJ. 13:3203.Google Scholar
  4. Charlesworth, B., and Charlesworth, D., 1985, Genetic variation in recombination in Drosophila. I. Response to selection and preliminary genetic analysis, Heredity 54:71.CrossRefGoogle Scholar
  5. Cullen, M., Erlich, H., Klitz, W., and Carrington, M., 1995, Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus, Am.J.Hum.Genet. 56:1350.PubMedGoogle Scholar
  6. Cullen, M., Noble, J., Erlich, H., Thorpe, K., Beck, S., Klitz, W., Trowsdale, J., and Carrington, M., 1997, Characterization of recombination in the HLA class II region, Am.J.Hum.Genet. 60:397.PubMedGoogle Scholar
  7. Fullerton, S.M., Harding, R.M., Boyce, A.J., and Clegg, J.B., 1994, Molecular and population genetic-analysis of allelic sequence diversity at the human ß-globin locus, Proc.Natl.Acad.Sci. USA 91:1805.PubMedCrossRefGoogle Scholar
  8. Hammer, M.F., Karafet, T., Rasanayagam, A., Wood, E.T., Altheide, T.K., Jenkins, T., Griffiths, R.C., Templeton, A.R., and Zegura, S.L., 1998, Out of Africa and back again: nested cladistic analysis of human Y chromosome variation, J.Mol.Evol. 15:427.CrossRefGoogle Scholar
  9. Harding, R.M., Fullerton, S.M., Griffiths, R.C., and Clegg, J.B., 1991 A gene tree for ß-globin sequences from Melanesia, J.Mol.Evol. 44 (Suppl):S133.CrossRefGoogle Scholar
  10. Harding, R.M., Fullerton, S.M., Griffiths, R.C., Bond, J., Cox, M.J., Schneider, J.A., Moulin, D.A., and Clegg, J.B., 1997b, Archaic African and Asian lineages in the genetic ancestry of modern humans, KmJHum. Genet. 60:772.Google Scholar
  11. Henke, A., Fischer, C., and Rappold, G.A., 1993, Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere, Genomics 18:478.PubMedCrossRefGoogle Scholar
  12. Howell, N., Kubacka, I., and Mackey, D.A., 1996, How rapidly does the human mitochondrial genome evolve? Am. J Hum. Genet. 59:501.PubMedGoogle Scholar
  13. Hubert, R., MacDonald, M., Gusella, J., and Arnheim, N., 1994, High resolution of recombination hot spots using sperm typing, Nature Genetics 7:420.PubMedCrossRefGoogle Scholar
  14. Hultén, M., 1974, Chiasma distribution at diakinesis in the normal human male, Hereditas 76:55.PubMedCrossRefGoogle Scholar
  15. Jeffreys, A.J., Royle, N.J., Wilson, V., and Wong, Z., 1988, Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA, Nature 332:278.PubMedCrossRefGoogle Scholar
  16. Jeffreys, A.J., Neumann, R., and Wilson, V., 1990, Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis, Cell 60:473.PubMedCrossRefGoogle Scholar
  17. Jeffreys, A.J., MacLeod, A., Tamaki, K., Neil, D.L., and Monckton, D.G., 1991, Minisatellite repeat coding as a digital approach to DNA typing, Nature 354:204.PubMedCrossRefGoogle Scholar
  18. Jeffreys, A.J., Tamaki, K., MacLeod, A., Monckton, D.G., Neil, D.L., and Armour, J.A.L., 1994, Complex gene conversion events in germline mutation at human minisatellites, Nature Genetics 6:136.PubMedCrossRefGoogle Scholar
  19. Kitsberg, D., Selig, S., Keshet, I., and Cedar, H., 1993, Replication structure of the human ß-globin gene domain, Nature 366:588.PubMedCrossRefGoogle Scholar
  20. Kon, N., Krawchuk, M.D., Warren, B.G., Smith, G.R., and Wahls, W.P., 1997, Transcription factor Mtsl/Mts2 (Atfl/Pcrl, Gad7/Pcrl) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe, Proc. Natl. Acad. Sci. (USA) 94:13765.PubMedCrossRefGoogle Scholar
  21. Mahtani, M.M. and Willard, H.F., 1993, A polymorphic X-linked tetranucleotide repeat locus displaying a high rate of new mutation: implications for mechanisms of mutation at short tandem repeat loci, Hum Mol Genet. 2:431.PubMedCrossRefGoogle Scholar
  22. Mahtani, M.M. and Willard, H.F., 1998, Physical and genetic mapping of the human X chromosome centromere: repression of recombination, Genome Res. 8:100.PubMedGoogle Scholar
  23. Malfroy, L., Roth, M.P., Carrington, M., Borot, N., Volz, A., Ziegler, A., and Coppin, H., 1997, Heterogeneity in rates of recombination in the 6-Mb region telomeric to the human major histocompatibility complex, Genomics 43:226.PubMedCrossRefGoogle Scholar
  24. May, CA., Jeffreys’, A.J., and Armour, J.A.L., 1996, Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309), Hum.Mol.Genet. 5:1823.PubMedCrossRefGoogle Scholar
  25. Monckton, D.G., Neumann, R., Guram, T., Fretwell, N., Tamaki, K., MacLeod, A., and Jeffreys A.J., 1994, Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism, Nature Genetics 8:162.PubMedCrossRefGoogle Scholar
  26. Neil, D.L. and Jeffreys, A.J., 1993, Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping, Hum Mol.Genet. 2:1129.PubMedCrossRefGoogle Scholar
  27. Nicolas, A., and Petes, T.D., 1994, Polarity of meiotic gene conversion in fungi: contrasting views, Expenentia 50:242.CrossRefGoogle Scholar
  28. Parsons, T.J., Muniec, D.S., Sullivan, K., Woodyatt, N., Alliston-Greiner, R., Wilson, M.R., Berry, D.L., Holland, K.A., Weedn, V.W., Gill, P., and Holland, M.M., 1997, A high observed substitution rate in the human mitochondrial DNA control region, Nature Genetics 15:363.PubMedCrossRefGoogle Scholar
  29. Reyniers, E., van Thienen, M.-N., Meire, F., De Boulle, K., Devries, K., Kestelijn, P., and Willems, P.J., 1995, Gene conversion between red and defective green opsin genes in blue cone monochromacy, Genomics 29:323.PubMedCrossRefGoogle Scholar
  30. Richards, M., Cortereal, H., Forster, P., Macaulay, V., Wilkinson-Herbots, H., Demaine, A., Papiha, S., Hedges, R., Bandelt, HJ., and Sykes, B., 1996, Paleolithic and neolithic lineages in the European mitochondrial gene pool, Am J.Hum.Genet. 59:185.PubMedGoogle Scholar
  31. Talbot, C.C. Jr., Avramopoulos, D., Gerken, S., Chakravarti, A., Armour, J.A., Matsunami, N., White, R. and Antonarakis, S.E., 1995, The tetranucleotide repeat polymorphism D21S1245 demonstrates hypermutability in germline and somatic cells, Hum.Mol Genet. 4:1193.PubMedCrossRefGoogle Scholar
  32. Tishkoff, S.A., Dietzsch, E., Speed, W., Pakstis, A.J., Kidd, J.R., Cheung, K., Bonné-Tamir, B., Santachiara-Benerecetti, A.S., Moral, P., Krings, M., Pääbo, S., Watson, E., Risch, N., Jenkins, T., and Kidd, K.K., 1996, Global patterns of linkage disequilibrium at the CD4 locus and modern human origins, Science 271:1380.PubMedCrossRefGoogle Scholar
  33. Tusie-Luna, M.-T. and White, P.C., 1995, Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms, Proc.Natl Acad.Sci. USA 92:10796.PubMedCrossRefGoogle Scholar
  34. Urabe, K.., Kimura, A., Harada, F., Iwanaga, T., and Sasazuki, T., 1990, Gene conversion in steroid 21-hydroxylase genes, Am J.Hum Genet. 46:1178.PubMedGoogle Scholar
  35. Vergnaud, G., 1994, No increase in female recombination frequency in the distal part of the human pseudoautosomal region, Genomics 24:610.PubMedCrossRefGoogle Scholar
  36. von Haeseler, A., Sajantila, A., and Pääbo, S., 1996, The genetical archaeology of the human genome, Nature Genetics 14:135.CrossRefGoogle Scholar
  37. Yu, J., Lazzeroni, L., Qin, J., Huang, M.-M, Navidi, W., Erlich, H., and Arnheim, N., 1996, Individual variation in recombination among human males, Am.J.Hum.Genet. 59:1186.PubMedGoogle Scholar
  38. Zangenberg, G., Huang, M.-M., Arnheim, N., and Erlich, H., 1995, New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm, Nature Genetics 10:407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • John A. L. Armour
    • 1
  • Santos Alonso Alegre
    • 1
  • Emma J. Rogers
    • 1
  • Louise J. Williams
    • 1
  • Sue Miles
    • 1
  • Richard M. Badge
    • 1
  1. 1.Division of Genetics School of Clinical Laboratory SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations