Genomes pp 163-181 | Cite as

A Phylogenetic and Genomic Analysis of Crop Germplasm: A Necessary Condition for its Rational Conservation and Use

  • Paul Gepts
Part of the Stadler Genetics Symposia Series book series (SGSS)


Biological research can be divided, at the risk of oversimplification, in a “vertical” and a “horizontal” component. Vertical biology refers to the elucidation of the function of individual organisms, from the gene to the phenotype. Horizontal biology refers to a comparison of function among organisms. Examples of vertical biology are the current genomics projects focused on model organisms such as human (Rowen et al., 1997), mouse (Dietrich et al., 1995), Arabidopsis (Bevan et al., 1998), and rice (Havukkala, 1996). In these projects, the ultimate goal is to identify each gene of the organism and their functions, at the molecular, cellular, and organismic level. It is a reductionist approach that relies on a few genotypes. Examples of horizontal biology are studies of the function of ecosystems, comparative genomics, and biodiversity (Conner et al., 1998; McCouch, 1998;


Quantitative Trait Locus Gene Pool Common Bean Quantitative Trait Locus Analysis Exotic Germplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N.O., Ascher, P.D., and Haghighi, K., 1996, Congruity backcrossing as a means of creating genetic variability in self-pollinated crops: seed morphology of Phaseolus vulgaris L. and P. acutifolius A. Gray, Euphytica 87:211–224.CrossRefGoogle Scholar
  2. Aquadro, C., 1997, Insights into the evolutionary process from patterns of DNA sequence variability, Curr. Opinion Genet. Dev. 7:835–840.CrossRefGoogle Scholar
  3. Beaver, J.S., and Kelly, J.D., 1994, Comparison of selection methods for dry bean populations derived from crosses between gene pools, Crop Sci. 34:34–37.CrossRefGoogle Scholar
  4. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Van Staveren, M., and Stiekema, W., 1998, Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana, Nature 391:485–488.Google Scholar
  5. Bliss, F.A., 1985, Breeding for enhanced dinitrogen fixation potential of common bean (Phaseolus vulgaris L.), in: Nitrogen Fixation andCO 2 Metabolism, Ludden, P.W., and Burris, J.E., eds., Elsevier, Amsterdam, pp. 303–310.Google Scholar
  6. Briggs, S., 1998, Plant genomics: more than food for thought, Proc Natl Acad Sci. (USA) 95:1986–1988.PubMedCrossRefGoogle Scholar
  7. Brush, S.B., 1993, Indigenous knowledge of biological resources and intellectual property rights: the role of anthropology, Amer. Anthropol 95:653–686.CrossRefGoogle Scholar
  8. Cavalli-Sforza, L., 1997, Genes, peoples, and languages, Proc. Natl. Acad. Sci. (USA) 94:7719–7724.PubMedCrossRefGoogle Scholar
  9. Intergovernmental Panel on Climate Change, 1996, Climate change 1995, Cambridge Univ. Press, Cambridge.Google Scholar
  10. Cheng, X., Sardana, R., Kaplan, H., and Altosaar, I., 1998, Agrobacterium-transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer, Proc. Natl. Acad. Sci. (USA) 95:2767–2772.PubMedCrossRefGoogle Scholar
  11. Clark, R., Shands, H., Bretting, P., and Eberhart, S., 1997, Managing large diverse germplasm collections, Crop Sci. 37:1–6.CrossRefGoogle Scholar
  12. Cohen, J.I., Williams, J.T., Plucknett, D.L., and Shands, H., 1991, Ex situ conservation of plant genetic resources: global development and environmental concerns, Science 253:866–872.PubMedCrossRefGoogle Scholar
  13. Conner, J., Conner, P., Nasrallah, M., and Nasrallah, J., 1998, Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis: implications for the evolution of mating systems in the Brassicaceae, Plant Cell 10:801–812.PubMedGoogle Scholar
  14. Cox, T.S., House, L.R., and Frey, K.J., 1984, Potential of wild germplasm for increasing yield of grain sorghum, Euphytica 33:673–684.CrossRefGoogle Scholar
  15. Dale, P.J., 1995, R & D regulation and field trialling of transgenic crops, Trends Biotech. 13:398–403.CrossRefGoogle Scholar
  16. Debouck, D.G., Toro, O., Paredes, O.M., Johnson, W.C., and Gepts, P., 1993, Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America, Econ Bot. 47:408–423.CrossRefGoogle Scholar
  17. Delgado Salinas, A., 1985, Systematics of the genus Phaseolus (Leguminosae) in North and Central America, PhD dissertation, University of Texas, Austin.Google Scholar
  18. Dietrich, W., Copeland, N., Gilbert, D., Miller, J., Jenkins, N., and Lander, E., 1995, Mapping the mouse genome: current status and future prospects, Proc. Natl. Acad. Sci (USA) 92:10849–10853.PubMedCrossRefGoogle Scholar
  19. Doebley, J., 1989, Isozymic evidence and the evolution of crop plants, in: Isozymes in Plant Biology, Soltis, D.E., and Soltis, P.S., eds, Dioscorides, Portland, OR., pp. 165–191.CrossRefGoogle Scholar
  20. Doebley, J., 1992, Molecular systematics and crop evolution, in: Molecular Systematics of Plants, Soltis, P.S., Soltis, D.E., and Doyle, J.J., eds, Chapman Hall, New York., pp. 202–222.CrossRefGoogle Scholar
  21. Doebley, J.F., Wendel, J.D., Smith, J.S.C., Stuber, C.W., and Goodman, M.M., 1988, The origin of cornbelt maize: the isozyme evidence, Econ Bot. 42:120–131.CrossRefGoogle Scholar
  22. Doll, J., 1998, The patenting of DNA, Science 280:689–689.PubMedCrossRefGoogle Scholar
  23. Dudley, J.W., 1982, Theory for transfer of alleles, Crop Sci. 22:631–636.CrossRefGoogle Scholar
  24. Edwards, M., 1992, Use of molecular markers in the evaluation and introgression of genetic diversity for quantitative traits, Field Crops Res. 29:241–260.CrossRefGoogle Scholar
  25. Fehr, W.R., 1984, Genetic Contributions to Yield gams of Five Major Crop Plants, Crop Science Society of America, Madison, WI.Google Scholar
  26. Frankel, O., and Bennett, E., 1970, Genetic Resources in Plants-Their Exploration and Conservation, Blackwell, Oxford.Google Scholar
  27. Frankel, O.H., 1984, Genetic perspectives of germplasm conservation, in: Genetic Manipulation Impact on Man and Society, Arber, W.K., Llimensee, K., Peacock, W.J., and Starlinger, P., eds., Cambridge Univ. Press, Cambridge, UK, pp. 161–170.Google Scholar
  28. Frey, K.J., 1975, Plant breeding in the seventies: useful genes from wild plant species, Egypt J. Genet. Cytol. 5:460–482.Google Scholar
  29. Frey, K.J., Rodgers, D.M., and Bramel-Cox, P., 1984, Increasing yields with genes from wild and weedy species, in: Proc. XVCongr. Genet, Chopra, V.L., Joshi, B.C., Sharma, R.P., and Bansal, H.C., eds., pp. 51–68.Google Scholar
  30. Freyre, R., Rios, R., Guzman, L., Debouck, D., and Gepts, P., 1996, Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia, Econ Bot. 50:195–215.CrossRefGoogle Scholar
  31. Gentry, 1969, Origin of the common bean, Phaseolus vulgaris, Econ. Bot 23:55–69.CrossRefGoogle Scholar
  32. Gepts, P., 1993, The use of molecular and biochemical markers in crop evolution studies, Evol Biol. 27:51–94.CrossRefGoogle Scholar
  33. Gepts, P., 1998, Origin and evolution of common bean: past events and recent trends, HortScience: 33:1124–1130.Google Scholar
  34. Gepts, P., Osborn, T.C., Rashka, K., and Bliss, F.A., 1986, Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication, Econ. Bot. 40:451–468.CrossRefGoogle Scholar
  35. Gu, W., Weeden, N., Yu, J., and Wallace, D., 1995, Large-scale, cost-effective screening of PCR products in marker-assisted selection applications, Theor. Appl. Genet. 91:465–470.CrossRefGoogle Scholar
  36. Haghighi, K.R., and Ascher, P.D., 1988, Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius from congruity backcrossing, Sex Plant Reprod. 1:51–58.CrossRefGoogle Scholar
  37. Hamilton, L., 1993, Ethics, Religion, and Biodiversity, White Horse, Cambridge.Google Scholar
  38. Harlan, J.R., 1976, Genetic resources in wild relatives of crops, Crop Sci 16:329–333.CrossRefGoogle Scholar
  39. Harlan, J.R., and de Wet, J.M.J., 1971, Towards a rational classification of cultivated plants, Taxon 20:509–517.CrossRefGoogle Scholar
  40. Havukkala, I., 1996, Cereal genome analysis using rice as a model, Curr. Opin. Genet. Dev 6:711–714.PubMedCrossRefGoogle Scholar
  41. Helentjaris, T., King, G., Slocum, M., Siedenstrang, C., and Wegman, S., 1985, Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding, Plant Molec. Biol. 5:109–118.CrossRefGoogle Scholar
  42. Heller, M., and Eisenberg, R., 1998, Can patents deter innovation? The anticommons in biomedical research, Science 280:698–701.PubMedCrossRefGoogle Scholar
  43. Hooper, D., and Vitousek, P., 1997, The effects of plant composition on ecosystem processes, Science 277:1302–1305.CrossRefGoogle Scholar
  44. Hughes, J., Daily, G., and Ehrlich, P., 1997, Population diversity: its extent and extinction, Science 278:689–692.PubMedCrossRefGoogle Scholar
  45. Johnson, W., Improving the efficiency of common bean (Phaseolus vulgaris L.) breeding programs using molecular markers, 1997, University of California, Davis.Google Scholar
  46. Johnson, W., Menéndez, C., Nodari, R., Koinange, E., Singh, S., and Gepts, P., 1996, Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp.: Sax (1923) revisited., J. Quant Trait Loci 2: Article 5,
  47. Kami, J., Becerra Velasquez, B., Debouck, D.G., and Gepts, P., 1995, Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris, Proc. Natl. Acad Sci. (USA) 92:1101–1104.CrossRefGoogle Scholar
  48. Koenig, R., and Gepts, P., 1989, Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of diversity, Theor Appl. Genet. 78:809–817.CrossRefGoogle Scholar
  49. Koinange, E.M.K., Singh, S.P., and Gepts, P., 1996, Genetic control of the domestication syndrome in common-bean, Crop Sci 36:1037–1045.CrossRefGoogle Scholar
  50. Kornegay, J., Cardona, C., and Posso, C.E., 1993a, Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests, Crop Sci. 33:589–594.CrossRefGoogle Scholar
  51. Kornegay, J., White, J.W., Dominguez, J.R., Tejada, G., and Cajiao, C., 1993b, Inheritance of photoperiod response in Andean and Mesoamerican common bean, Crop Sci. 33:977–984.CrossRefGoogle Scholar
  52. Lee, ML, 1995, DNA markers and plant breeding programs, Adv. Agron. 35:265–344.CrossRefGoogle Scholar
  53. Lee, M., 1998, Genome projects and gene pools: new germplasm for plant breeding?, Proc. Natl. Acad. Sci. (USA) 95:2001–2004.PubMedCrossRefGoogle Scholar
  54. Leopold, A., 1949, A Sand County almanach, Oxford University Press, New York.Google Scholar
  55. LeRoy, A.R., Fehr, W.R., and Cianzio, S.R., 1991, Introgression of genes for small seed size from Glycine soja into G. max, Crop Sci. 31:693–697.Google Scholar
  56. Li, Z., Pinson, S., Park, W., Paterson, A., and Stansel, J., 1997, Epistasis for three grain yield components in rice (Oryza sativa L.), Genetics 145:453–465.PubMedGoogle Scholar
  57. Mason, H., Ball, J., Shi, J.-J., Jiang, X., Estes, M., and Arntzen, C., 1996, Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice, Proc. Natl Acad. Sci. (USA) 93:5335–5340.PubMedCrossRefGoogle Scholar
  58. Maunder, A.B., 1992, Identification of useful germplasm for practical plant breeding programs, in: Plant Breeding in the 1990s, Stalker, H.T., and Murphy, J.P., eds., CAB International, Wallingford, Oxon, UK, pp. 147–169.Google Scholar
  59. Maxted, N., Ford-Lloyd, B., and Hawkes, J., 1997, Plant Genetic Conservation, the In Situ Approach, Chapman & Hall, London.CrossRefGoogle Scholar
  60. McClean, P.E., Myers, J.R., and Hammond, J.J., 1993, Coefficient of parentage and cluster analysis of North American dry bean cultivars, Crop Sci. 33:190–197.CrossRefGoogle Scholar
  61. McCouch, S., 1998, Towards a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses, Proc. Natl. Acad. Sci. (USA) 95:1983–1985.PubMedCrossRefGoogle Scholar
  62. Nicholls, N., 1997, Increased Australian wheat yield due to recent climate trends, Nature 387:484–485.CrossRefGoogle Scholar
  63. O’Brien, S., Wienberg, J., and Lyons, L., 1997, Comparative genomics: lessons from cats, Trends Genet. 13:393–399.PubMedCrossRefGoogle Scholar
  64. Osborn, T.C., Alexander, D.C., Sun, S.S.M., Cardona, C., and Bliss, F.A., 1988, Insecticidal activity and lectin homology of arcelin seed protein, Science 240:207–210.CrossRefGoogle Scholar
  65. Pakes, A., and Sokoloff, K., 1996, Science, technology, and economic growth, Proc. Natl. Acad. Sci. (USA) 93:12655–12657.PubMedCrossRefGoogle Scholar
  66. Paterson, A.H., Tanksley, S.D., and Sorrells, M.E., 1991, DNA markers in plant improvement, Adv. Agron. 46:39–90.CrossRefGoogle Scholar
  67. Pereira, P.A.A., de Souza Carneiro, J.E., Torres da Silva, H., Del Peloso, M.J., and Gepts, P., 1996, Introgressão de genes de feijões silvestres em feijão cultivado, in: Anais VReunião Nacional de Pesquisa de Feijão, 14-18 outuhro de 1996, Goiânia, GO, EMBRAPA-CNPAF, Goiânia, GO, Brazil, pp. 393-396.Google Scholar
  68. Pottast, T., 1996, Inventing biodiversity: genetics, evolution, and environmemtal ethics, Biol. Zent. bl. 115:177-188.Google Scholar
  69. Prakken, R., 1934, Inheritance of colours and pod characters in Phaseolus vulgaris L, Genetica 16:177–294.CrossRefGoogle Scholar
  70. Rasmusson, D., and Phillips, R., 1997, Plant breeding progress and genetic diversity from de novo variation and elevated epistasis, Crop Sci. 37:303–310.CrossRefGoogle Scholar
  71. Rowen, L., Mahairas, G., and Hood, L., 1997, Sequencing the human genome, Science 278:605–607.PubMedCrossRefGoogle Scholar
  72. Sax, K., 1923, The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris, Genetics 8:552–560.Google Scholar
  73. Shands, H.L., and Wiesner, L.E., 1991, Use of plant introductions in cultivar development, 2 vol, Crop Science Society America, Madison, WI.Google Scholar
  74. Shonnard, G.C., and Gepts, P., 1994, Genetics of heat tolerance during reproductive development in common bean, Crop Sci. 34:1168–1175.CrossRefGoogle Scholar
  75. Simmonds, N.W., 1993, Introgression and incorporation: strategies for the use of crop genetic resources, Biol. Rev. 68:539–562.CrossRefGoogle Scholar
  76. Simpson, R., Sedjo, R., and Reid, J., 1996, Valuing biodiversity for use in pharmaceutical research, J. Pol Econ 104:163–185.CrossRefGoogle Scholar
  77. Singh, S.P., Cajiao, C., Gutiérrez, J.A., Garcia, J., Pastor-Corrales, M.A., and Morales, F.J., 1989, Selection for seed yield in inter-gene pool crosses of common bean, Crop Sci. 29:1126–1131.CrossRefGoogle Scholar
  78. Singh, S.P., Gepts, P., and Debouck, D.G., 1991a, Races of common bean (Phaseolus vulgaris L., Fabaceae), Econ Bot 45:379–396.CrossRefGoogle Scholar
  79. Singh, S.P., Gutirrez, J.A., Molina, A., Urrea, C., and Gepts, P., 1991b, Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits, Crop Sci 31:23–29.CrossRefGoogle Scholar
  80. Singh, S.P., Molina, A., Urrea, CA., and Gutiérrez, J.A, 1993, Use of interracial hybridization in breeding the race Durango common bean, Can. J. Plant Sci. 73:785–793.CrossRefGoogle Scholar
  81. Singh, S.P., Nodari, R., and Gepts, P., 1991c, Genetic diversity in cultivated common bean. I. Allozymes, Crop Sci. 31:19–23.CrossRefGoogle Scholar
  82. Singh, S.P., and Urrea, C.A., 1995, Inter-and intraracial hybridization and selection for seed yield in early generations of common bean, Phaseolus vulgaris L., Euphytica 81:131–137.CrossRefGoogle Scholar
  83. Smartt, J., and Simmonds, N., 1995, Evolution of Crop Plants, 2nd ed., Wiley, New York.Google Scholar
  84. Sonnante, G., Stockton, T., Nodari, R.O., Becerra Velasquez, V.L., and Gepts, P., 1994, Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.), Theor. Appl. Genet. 89:629–635.CrossRefGoogle Scholar
  85. Spillane, C., and Gepts, P., 2000, Evolutionary and genetic perspectives on crop genepools, in: Broadening the Genetic Bases of Crop Production, Spillane, C., Cooper, D., and Hodgkin, T., eds., FAO-IPGR1, Rome, pp. in press.Google Scholar
  86. St. Clair, D.A., and Bliss, F.A., 1991, Intrapopulation recombination for 15N-determined dinitrogen fixation ability in common bean, Plant Breed 106:215–225.CrossRefGoogle Scholar
  87. Stalker, H.T., 1980, Utilization of wild species for crop improvement, Adv. Agron. 33:111–147.CrossRefGoogle Scholar
  88. Tanksley, S., and McCouch, S., 1997, Seed banks and molecular maps: unlocking genetic potential from the wild, Science 277:1063–1066.PubMedCrossRefGoogle Scholar
  89. Tanksley, S., Young, N.D., Patterson, A.H., and Bonierbale, M.W., 1989, RFLP in plant breeding: new tools for an old science, Bio/Technology 7:257–264.CrossRefGoogle Scholar
  90. Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J., and Beckbunn, T., 1996, Advanced backeross QTL analysis in a cross between an elite processing line of tomato and its wild relative L pimpinelhfohum, Theor Appl. Genet 92:213–224.CrossRefGoogle Scholar
  91. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E., 1997, The influence of functional diversity and composition on ecosystem processes, Science 277:1300–1302.CrossRefGoogle Scholar
  92. Tinker, N., and Mather, D., 1995, MQTL: software for simplified composite interval mapping of QTL in multiple environments, J Quant. Trait Loci 1:
  93. Urrea, C.A., and Singh, S.P., 1995, Comparison of recurrent and congruity backcross for interracial hybridization in common bean, Euphytica 81:21–26.CrossRefGoogle Scholar
  94. Vitousek, P., Mooney, H., Lubchenco, J., and Melillo, J., 1997, Human domination of Earth’s ecosystems, Science 277:494.CrossRefGoogle Scholar
  95. Wehrhahn, C., and Allard, R.W., 1965, The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative trait in wheat, Genetics 51:109–119.PubMedGoogle Scholar
  96. Welsh, W., Bushuk, W., Roca, W., and Singh, S.P., 1995, Characterization of agronomic traits and markers of recombinant inbred lines from intra-and interracial populations of (Phaseolus vulgaris L), Theor. Appl. Genet. 91:169–177.CrossRefGoogle Scholar
  97. Wilson, E., 1992, The Diversity of Life, Harvard Univ. Press, Cambridge.Google Scholar
  98. Wuketits, F., 1997, The status of biology and the meaning of biodiversity, Naturwissenschaften 84:473–479.PubMedCrossRefGoogle Scholar
  99. Xiao, J., Grandillo, S., Ahn, S.N., McCouch, S.R., Tanksley, S.D., Li, J., and Yuan, L., 1996, Genes from wild rice improve yield, Nature 384:223–224.CrossRefGoogle Scholar
  100. Yu, S., Li, J., Xu, C., Tan, Y., Gao, Y., Li, X., Zhang, Q., and Saghai Maroof, M., 1997, Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid, Proc. Natl. Acad. Sci. (USA) 94:9226–9231.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Paul Gepts
    • 1
  1. 1.Department of Agronomy and Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations