Advertisement

Examining New Models for the Study of Autocrine and Paracrine Mechanisms of Angiogenesis Through FGF2-Transfected Endothelial and Tumour Cells

  • Marco Presta
  • Marco Rusnati
  • Patrizia Dell’Era
  • Elena Tanghetti
  • Chiara Urbinati
  • Roberta Giuliani
  • Daria Leali
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 476)

Abstract

Angiogenesis is the process of generating new capillary blood vessels. Uncontrolled endothelial cell proliferation is observed in tumour neovascularization. Several growth factors and cytokines have been shown to stimulate endothelial cell proliferation in vitroand in vivoand among them FGF2 was one of the first to be characterised. FGF2 is a Mr18,000 heparinbinding cationic polypeptide that induces proliferation, migration, and protease production in endothelial cells in culture and neovascularization in vivo.FGF2 interacts with endothelial cells through two distinct classes of receptors, the high affinity tyrosine-kinase receptors (FGFRs) and low affinity heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix. Besides experimental evidence for paracrine mode of action for FGF2, some observations raise the hypothesis that FGF2 may also play an autocrine role in endothelial cells. FGF2 may therefore represent a target for antiangiogenic therapies. In order to assess the angiostatic potential of different classes of compounds, novel experimental models have been developed based on the autocrine and/or the paracrine capacity of FGF2.

Key words

FGF2 endothelium angiogenesis transfection signal transduction heparin. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, J.A., Mergia A., Whang, J.L., Tumolo A., Friedman J., Hjerrild J., Gospodarowicz D., and Fiddes, J., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor, Science 233:545–548.PubMedCrossRefGoogle Scholar
  2. Albini A., Fontanini G., Masiello L., Tacchetti, C, Bigini D., Luzzi P., Noonan, D.M., and Stetler-Stevenson, W.G., 1994, Angiogenic potential in vivo by Kaposi sarcoma cell-free supernatants and HIVl-tat product: inhibition of KS-like lesions by TIMP-2, AIDS 8:1237–1244PubMedCrossRefGoogle Scholar
  3. Asahara T., Bauters, C, Zheng. L.P., Takeshita S., Bunting. S., Ferrara N., Symes, J.F., and Isner, J.M., 1985, Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo, Circulation 92:365–371.CrossRefGoogle Scholar
  4. Baird A., Mormède P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  5. Baird A., Mormède P., and Bohlen, P., 1986, Immunoreactive fibroblast growth factor (FGF) in a transplantable chondrosarcoma: inhibition of tumor growth by antibodies to FGF, J. Cell. Biochem. 30:79–85PubMedCrossRefGoogle Scholar
  6. Barillari G., Buonaguro L., Fiorelli V., Hoffman J., Michaels F., Gallo, R.C., and Ensoli, B., 1992, Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression, J. Immunol. 149:3727–3734.Google Scholar
  7. Basilico, C, and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes, Adv. Cancer Res. 59:115–165.PubMedCrossRefGoogle Scholar
  8. Blotnick S., Peoples, G.E., Freeman, MR., Eberlein, T.J., and Klagsbrun, M., 1994,. Tlymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts:differential production and release by CD4+ and CD8+ T cells, Proc. Natl. Acad. Sci. USA 91:2890–2894.PubMedCrossRefGoogle Scholar
  9. Braddock, P.S., Hu, D.-E., Fan, T.-P.D., Stratford, I.J., Harris, A.L., and Bicknell, R.A., 1994, A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions, Br. J. Cancer 69:890–898.PubMedCrossRefGoogle Scholar
  10. Brem H., Gresser I., Grosfeld J., and Folkman, J., 1993, The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis, J. Pediatr. Surg. 28: 1253–1257.PubMedCrossRefGoogle Scholar
  11. Broadly, K.N., Aquino, A.M., Woodward, S.C., Buckley-Sturrock A., Sato Y., Rifkin, D.B., and Davidson, J.M., 1989, Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair, Lab. Invest. 61:571–575.Google Scholar
  12. Chodak, G.W., Hospelhorn V., Judge, S.M., Mayforth R., Koeppen H., and Sasse, J., 1988, Increased levels of fibroblast growth factor-like activity in urine from patients with bladder or kidney cancer, Cancer. Res. 48:2083–2088.PubMedGoogle Scholar
  13. Ciomei M., Pastori W., Mariani M., Sola F., Grandi M., and Mongelli, N., 1994, New sulfonated distamycin A derivatives with bFGF complexing activity, Biochem. Pharmacol. 47:296–302.CrossRefGoogle Scholar
  14. Coltrini D., Rusnati M., Zoppetti G., Oreste P., Grazioli G., Naggi A., and Presta, M., 1994, Different effects of mucosal, bovine lung and chemically modified heparin on selected biological properties of basic fibroblast growth factor, Biochem. J. 303:583–590.PubMedGoogle Scholar
  15. Coltrini, D., Gualandris, A., Nelli, E.E., Parolini S., Molinari-Tosatti, MP., Quarto, N., Ziche M., Giavazzi R., Presta, M., 1995, Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-l-B cells: an export-dependent mechanism of action, Cancer Res. 55:4729–4738.PubMedGoogle Scholar
  16. Cozzolino F., Torcia M., Lucibello M., Morbidelli L., Ziche M., Piatt J., Fabiani S., Brett J., and Stern, D., 1993, Cytokine-mediated control of endothelial cell growth: interferon-? and interleukin-2 synergistically enhance basic fibroblast growth factor synthesis and induce release promoting cell growth in vitro and in vivo, J. Clin. Invest. 91:2504–2512.PubMedCrossRefGoogle Scholar
  17. Czubayko F., Liaudet-Coopman, E.D.E., Aigner A., Tuveson, A.T., Berchem, G.J., and Wellstein, A., 1997, A secreted FGF-binding protein can serve as the angiogenic switch in human cancer, Nature Medicine 3:1137–1140.PubMedCrossRefGoogle Scholar
  18. DiMario J., Buffinger N., Yamada S., and Strohman, R.C., 1989, Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle, Science 244:688–690.PubMedCrossRefGoogle Scholar
  19. Ensoli B., Gendelman, R, Markham P., Fiorelli V., Colombini S., Raffeld M., Cafaro A., Chang, H.K., Brady, J.N., and Gallo, R.C., 1994a, Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma, Nature 371:674–680.PubMedCrossRefGoogle Scholar
  20. Ensoli B., Markham P., Kao V., Barillari G., Fiorelli V., Gendelman, R, Raffeld M., Zon G., and Gallo, R.C., 1994b, Block of AIDS-Kaposi’s sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS, J. Clin. Invest. 94:1736–1746.PubMedCrossRefGoogle Scholar
  21. Enzinger F.M. and Weiss S.W. 1995 Soft tissue tumors pp. 579–677 Mosby-Year Book Inc. St. LouisGoogle Scholar
  22. Ezekowitz, RA.B., Mulliken, J.B., and Folkman, J., 1992, Interferon alfa-2a therapy for lifethreatening hemangiomas of infancy, New Engl. J. Med. 326: 1456–1463.PubMedCrossRefGoogle Scholar
  23. Fiorelli V., Gendelman R., Samaniego F., Markham, P.D., and Ensoli, B., 1995, Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi’s sarcoma spindle cells, J. Chn. Invest. 95:1723–1734.CrossRefGoogle Scholar
  24. Firsching A., Nickel P., Mora P., and Allolio, B., 1995, Antiproliferative and angiostatic activity of suramin analogues, Cancer Res. 55:4975–5061.Google Scholar
  25. Florkiewicz, R.Z., and Sommer, A., 1989, Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons, Proc. Natl. Acad. Sci. USA 86:3978–3981.PubMedCrossRefGoogle Scholar
  26. Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., and Vlodavski, L, 1988. A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membran},. Am. J. Pathol. 130:393–400.PubMedGoogle Scholar
  27. Gagliardi A., Hadd H., and Collins, D.C., 1992, Inhibition of angiogenesis by suramin, Cancer Res. 52:5073–5075.PubMedGoogle Scholar
  28. Gagliardi, A.R., and Collins, D.C., 1994, Inhibition of angiogenesis by aurintricarboxylic acid, Anticancer Res. 14:475–479.PubMedGoogle Scholar
  29. Gajdusek, CM., and Carbon, S., 1989, Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium, J. Cell. Physiol. 139:570–579.PubMedCrossRefGoogle Scholar
  30. Gannoun-Zaky L., Pieri I., Badet, I, Moenner M., Barritault, D., 1991, Internalization of basic fibroblast growth factor by Chinese hamster lung fibroblast cells: involvement of several pathways, Exp. Cell Res. 197:272–279.CrossRefGoogle Scholar
  31. Gao G., and Goldfarb, M., 1995 Heparin can activate a receptor tyrosine kinase, EMBOJ. G:2183–2190.Google Scholar
  32. Goto F., Goto K., Weindel K., and Folkman, J., 1993, Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels, Lab. Invest. 69:508–517.PubMedGoogle Scholar
  33. Gross, J.L., Herblin, W.F., Dusak, B.A., Czerniak P., Diamond, M.D., Sun T., Eidsvoog K., Dexter, D.L., and Yayon, A., 1993, Effects of modulation of basic fibroblast growth factor on tumor growth in vivo, J. Natl. Cancer Inst. 85:121–131.PubMedCrossRefGoogle Scholar
  34. Gualandris A., Urbinati, C, Rusnati M., Ziche M., and Presta, M., 1994, Interaction of high molecular weight basic fibroblast growth factor (bFGF) with endothelium: biological activity and intracellular fate of human recombinant Mr 24,000 bFGF, J. Cell. Physiol. 161:149–159.PubMedCrossRefGoogle Scholar
  35. Gualandris A., Rusnati M., Belleri M., Nelli, E.E., Bastaki M., Molinari-Tosatti, M.P., Bonardi F., Parolini S., Albini A., Morbidelli L., Ziche M., Corallini A., Possati L., Vacca A., Ribatti D., and Presta, M., 1996a, Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases, Cell Growth & Differ. 7:147–160.Google Scholar
  36. Gualandris A., Rusnati M., Belleri M., Molinari-Tosatti, M.P., Bonardi F., Parolini S., Albini A., Ziche M., and Presta, M., 1966b, Angiogenic phenotype induced by basic fibroblast growth factor transfection in brain microvascular endothelial cells: an in vitro autocrine model of angiogenesis in brain tumors, Int. J. Oncol. 8:567–573.Google Scholar
  37. Guimond S., Maccarana M., Olwin, B.B., Lindahl U., and Rapraeger, AC, 1993, Activating and inhibitory heparin sequences for FGF-2 (basic FGF), J. Biol. Chem. 268:23906–23914.PubMedGoogle Scholar
  38. Halaban R., Kwon, B.S., Ghosh S., Delli-Bovi P., and Baird, A., 1993, bFGF as an autocrine growth factor for human melanomas, Oncogene Res. 3:177–186.Google Scholar
  39. Hawker, J.R.H., and Granger, J., 1993, Tyrosine kinase inhibitors impair fibroblast growth factor signaling in coronary endothelial cells, Am. J. Physiol 266:H107–H120.Google Scholar
  40. Ikeda S., Neyts J., Verma S., Wickramasinghe A., Mohan P., and De Clercq, E., 1994, In vitro and in vivo inhibition of ortho-and paramyxovirus infections by a new class of sulfonic acid polymers interacting with virus-cell binding and/or fusion, Antimicrob. Agents Chemother. 38:256–259.PubMedCrossRefGoogle Scholar
  41. Ishihara M., Tyrrell, D.J., Stauber, G.B., Brown S., Cousens, L.S., and Stack, R.J., 1993, Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor, J. Biol. Chem. 268:4675–4683.PubMedGoogle Scholar
  42. Itoh H., Mukoyama M., Pratt, R.E., and Dzau, V.J., 1992, Specific blockade of basic fibroblast growth factor gene expression in endothelial cells by antisense oligonucleotide, Biochem. Biophys. Res. Commun. 188:1205–1213.PubMedCrossRefGoogle Scholar
  43. Johnson, D.E., and Williams, L.T. 1993, Structural and functional diversity in the FGF receptor multigene family, Adv. Cancer Res. 60:1–41.PubMedCrossRefGoogle Scholar
  44. Kandell J., Bossy-Wetzei E., Radvanyi F., Klagsbrun M., Folkman J., and Hanahan, D., 1991, Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma, Cell 66:1095–1104.CrossRefGoogle Scholar
  45. Kim, K.J., Li B., Winer J., Armanini M., Gillett N., Phillips, H.S., and Ferrara, N., 1993, Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in \i\o, Nature 362:841–844.CrossRefGoogle Scholar
  46. Kan M., Wang F., Xu, J., Crabb, J.W., Hou J., and McKeehan, L.W., 1993, An essential heparin-binding domain in the fibroblast growth factor receptor kinase, Science 259:1918–1921.PubMedCrossRefGoogle Scholar
  47. Klein S., Giancotti, F.G., Presta M., Albelda, S.M., Buck, C.A., and Rifkin, D.B., 1993, Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells, Mol. Biol Cell 4:973–982.PubMedGoogle Scholar
  48. Konerding, M.A., Miodonski, A.J., and Lametschwandtner, A., 1995, Microvascular corrosion casting in the study of tumor vascularity: a review, Scanning Microsc. 9:1233–1244.PubMedGoogle Scholar
  49. Konerding, M.A., Fait E., Dimitropoulou, C, Malkusch W., Ferri, C, Giavazzi, R, Coltrini D., and Presta, M., 1998, Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study, Am. J. Pathol. 152:1607–1616.PubMedGoogle Scholar
  50. Levine, A.M., 1993, AIDS-related malignancies: the emerging epidemic, J. Natl. Cancer Inst. 85:1382–1387.PubMedCrossRefGoogle Scholar
  51. Li, V.W., Folkerth, R.D., Watanabe H., Yu, C, Rupnick M., Barnes P., Scott, R.M., Black, P.M., Sallan, S.E., and Folkman, J., 1994, Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors, Lancet 344:82–86.PubMedCrossRefGoogle Scholar
  52. Liekens S., Neyts J., Degrève B., and De Clercq, E., 1997, The sulfonic acid polymers PAMPS [poly(acrylamido-2-methyl-l-propanesulfonic acid)] and related analogues are highly potent inhibitors of angiogenesis, Oncol. Res. 9:173–181.PubMedGoogle Scholar
  53. Liekens S., Leali D., Neyts J., Esnouf R., Rusnati M., Del’Era P., Maudgal, P.C., De Clercq E., and Presta, M., 1999, Modulation of fibroblast growth factor-2 receptor binding, signaling, and mitogenic activity by heparin-mimicking polysulfonated compounds, Mol Pharmacol in press.Google Scholar
  54. Malkusch W., Konerding, M.A., Klapthor B., and Bruch, J., 1995, A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumor vascularization, Anal. Cell. Pathol. 9:69–81.PubMedGoogle Scholar
  55. Martiny-Baron G., and Marmè, D., 1995, VEGF-mediated tumour angiogenesis: a new target for cancer therapy, Curr. Opinion. Biotech. 6:675–680.CrossRefGoogle Scholar
  56. McNeil, P.L., Muthukrishnan L., Warder E., and D’Amore, P., 1989, Growth factors are released by mechanically wounded endothelial cells, J. Cell Biol 109:811–822.PubMedCrossRefGoogle Scholar
  57. Miao, H.-Q., Ornitz, D.M., Aingorn E., Ben-Sasson, S.A., and Vlodavsky, I., 1997, Modulation of fibroblast growth factor-2 receptor binding, dimerization, signaling and angiogenic activity by a synthetic heparm-mimicking polyanionic compound, J. Chn. Invest. 99:1565–1575.CrossRefGoogle Scholar
  58. Mignatti P., Tauboi R., Robbins E., and Rifkin, D.B., 1989, In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor, J. Cell Biol. 108:671–682.PubMedCrossRefGoogle Scholar
  59. Mignatti P., Mazzieri R., and Rifkin, D.B., 1991a, Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor, J. Cell Biol 113:1193–1201.PubMedCrossRefGoogle Scholar
  60. Mignatti P., Morimoto T., and Rifkin, D.B., 1991b, Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner, Proc. Natl Acad. Sci. USA 88:11007–11011.PubMedCrossRefGoogle Scholar
  61. Mignatti P., Morimoto T., and Rifkin, D.B., 1992, Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex, J. Cell. Physiol. 151:81–93.PubMedCrossRefGoogle Scholar
  62. Millauer B., Shawver, K.L., Plate, K.H., Risau W., and Ullrich, A., 1994, Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant, Nature 367:576–579.PubMedCrossRefGoogle Scholar
  63. Montesano R., Vassalli, J.D., Baird A., Guillemin R., and Orci, L., 1986, Basic fibroblast growth factor induces angiogenesis in vitro, Proc. Natl Acad. Sci. USA 83:7297–7301.PubMedCrossRefGoogle Scholar
  64. Moscatelli D., Presta M., Joseph-Silverstein J., and Rifkin, D.B., 1986, Both normal and tumor cells produce basic fibroblast growth factor, J. Cell. Physiol. 129:273–276.PubMedCrossRefGoogle Scholar
  65. Mohan P., Schols D., Baba M., and De Clercq, E., 1992, Sulphonic acid polymers as a new class of human immunodeficency virus inhibitors, Antiviral Res. 18:139–150.PubMedCrossRefGoogle Scholar
  66. Myers, C, Cooper M., Stein, C, LaRocca R., McClellan, M.W., Weiss, G, Choyke P., Dawson N., Steinberg S., Uhrich, M.M., Cassisy J., Kohler, D.R., Trepel J., and Linehan, M., 1992, Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer, J. Clin. Oncol 10:881–889.PubMedGoogle Scholar
  67. Nakamoto T., Chang, C, Li A., and Chodak, G.W., 1992, Basic fibroblast growth factor in human prostate cancer cells, Cancer Res. 52:571–577PubMedGoogle Scholar
  68. Nguyen M., Watanabe H., Budson, A.E., Richie, J.P., Hayes, D.F., and Folkman, J., 1994, Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers, J. Natl Cancer. Inst. 86:356–361.PubMedCrossRefGoogle Scholar
  69. Norbby K., and Ostergaard, P., 1996, Basic-fîbroblast-growth-factor-mediated de novo angiogenesis is more effetively suppressed by low-molecular weight than by high-molecular-weight heparin. Int. J. Microcirc. Clin. Exp. 16:8–15.CrossRefGoogle Scholar
  70. Ohtani H., Nakamura S., Watanabe Y., Mizoi T., Saku T., and Nagura, H., 1993, Immunocytochemical localization of basic fibroblast growth factor in carcinomas and inflammatory lesions of the human digestive tract, Lab. Invest. 68:520–527.PubMedGoogle Scholar
  71. Okumura N., Takimoto K., Okada M., and Nakagawa, H., 1989, C6 glioma cells produce basic fibroblast growth factor that can stimulate their own proliferation, J. Biochem 106:904–909.PubMedGoogle Scholar
  72. Pepper, M.S., and Meda, P., 1992, Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells, J. Cell. Physiol. 153:196–205.PubMedCrossRefGoogle Scholar
  73. Pepper, M.S., Sappino, A.P,, Stocklin, R, Montesano, R, Orci L., and Vassalli, J.D., 1993, Upregulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.PubMedCrossRefGoogle Scholar
  74. Peverali, F.A., Mandriota, S.J., Ciana P., Marelli R., Quax P., Rifkin, D.B., Delia Valle G., and Mignatti, P., 1994, Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells, J. Cell. Physiol. 161:1–14.PubMedCrossRefGoogle Scholar
  75. Presta M., Moscatelli D., Joseph-Silverstein J., and Rifkin, D.B., 1986, Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration, Mol Cell. Biol. 6:4060–4066.PubMedGoogle Scholar
  76. Presta M., Maier, J.A.M., Rusnati M., and Ragnotti, G., 1989, Basic fibroblast growth factor: production, mitogenic response, and post-receptor signal transduction in cultured normal and transformed fetal bovine aortic endothelial cells, J. Cell. Physiol. 141:517–526.CrossRefGoogle Scholar
  77. Presta M., Rusnati, M, Belleri M., Morbidelli L., Ziche M., and Ribatti, D., 1999, Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenesis process, Cancer Res. 59:2417–2424.PubMedGoogle Scholar
  78. Rak J., and Kerbel, R.S., 1997, bFGF and tumor angiogenesis-Back in the limelight?, Nature Medicine 3:1083–1084.PubMedCrossRefGoogle Scholar
  79. Ribatti, D, Urbinati, C, Nico B., Rusnati M., Roncah L., and Presta, M., 1995, Endogenous basic fibroblast growth factor in the vascularization of the chick embryo chorioallantoic membrane, Dev. Biol. 170:39–49.PubMedCrossRefGoogle Scholar
  80. Richard, C, Liuzzo, J.P., and Moscatelli, D., 1995, Fibroblast growth factor-2 can mdiate cell attachment by linking receptors and heparan sulfate proteoglycans on neighboring cells, J. Biol. Chem. 270:24188–24196.PubMedCrossRefGoogle Scholar
  81. Rogelj S., Klagsbrun M., Atzmon, R, Kurokawa M., Haimovitz A., Fuks Z., and Vlodavski, I., 1989, Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC 12 cells, J. Cell Biol. 109:823–831.CrossRefGoogle Scholar
  82. Roghani M., and Moscatelli, D., 1993, Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms, J. Biol. Chem. 267:22156–22162.Google Scholar
  83. Rusnati M., Urbinati, C, Presta, M., 1993, Internalization of basic fibroblast growth factor (bFGF) in cultured endothelial cells: role of the low affinity heparin-like bFGF receptors, J. Cell. Physiol. 154:152–161.PubMedCrossRefGoogle Scholar
  84. Rusnati M., Coltrini D., Caccia P., Del’Era P., Zoppetti G., Oreste P., Valsasina B., Presta, M., 1994, Distinct role of 2-0-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1, Biochem. Biophys. Res. Commun. 203:450–458.PubMedCrossRefGoogle Scholar
  85. Rusnati M., and Presta, M., 1996a, Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans, Int. J. Clin. Lab. Res. 26:15–23.PubMedCrossRefGoogle Scholar
  86. Rusnati, M, Del’Era P., Urbinati, C, Tanghetti E., Massardi, M.L., nagamine Y., Monti E., and Presta, M., 1996b, A distinct basic fibroblast growth factor (FGF-2/FGF receptor interaction distinguishes urokinase-type plasminogen activator induction from mitogenicity in endothelial cells, Mo/. Biol Cell 7:369–381.Google Scholar
  87. Saleh M., Stacker, S.A., and Wilks, A.F., 1996, Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence, Cancer Res. 56:393–401.PubMedGoogle Scholar
  88. Samoto K., Ikezaki K., Ono M., Shono T., Kohno K., Kuwano M., and Fukui, M, 1995, Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors, Cancer Res. 55:1189–1193.PubMedGoogle Scholar
  89. Sato Y., and Rifkin, D.B., 1988, Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis, J. Cell Biol. 107:1199–1205.CrossRefGoogle Scholar
  90. Schulze-Osthoff K., Risau W., Vollmer E., and Sorg, C, 1990, In situ detection of basic fibroblast growth factor by highly specific antibodies, Am. J. Pathol. 137:85–92.PubMedGoogle Scholar
  91. Schweigerer, L. Neufeld G., Friedman J., Abraham, J.A., Fiddes, J.C., and Gospodarowicz, D., 1987, Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth, Nature 325:257–259.PubMedCrossRefGoogle Scholar
  92. Speir E., Tanner V., Gonzales, A.M., Farris J., Baird A., and Casscells, W., 1992, Acid and basic fibroblast growth factors in adult rat heart myocytes: localization, regulatio in culture, and effects on DNA synthesis, Circ. Res. 71:251–259.PubMedCrossRefGoogle Scholar
  93. Statuto M., Ennas, M.G, Zamboni, G, Bonetti F., Pea M., Bernardello F., Pozzi A., Rusnati M., Gualandris A., and Presta, M., 1993, Basic fibroblast growth factor in human pheochromocytoma: a biochemical and immunohistochemical study, Int. J. Cancer. 53:5–10.PubMedCrossRefGoogle Scholar
  94. Sturzl M., Brandstetter H., and Roth, W.K., 1992, Kaposi’s sarcoma: a review of gene expression and ultrastructure of KS spindle cells in vivo, AIDS Res. Human Retrov. 8:1753–1763.CrossRefGoogle Scholar
  95. Takahashi, J.A., Mori H., Fukumoto M., Igarashi K., Jaye M., Oda, Y, Kikuchi H., and Hatanaka, M., 1990, Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues, Proc. Natl. Acad Sci. USA 87:5710–5714.PubMedCrossRefGoogle Scholar
  96. Takahashi K., Mulliken, J.B., Kozakewich, H.P.W., Rogers, R.A., Folkman J., and Ezekowitz, R.A.B., 1994, Cellular markers that distinguish the phases of hemangioma during infancy and childhood, J. Clin. Invest. 93:2357–2364.CrossRefGoogle Scholar
  97. Takahashi Y., Cleary, K.R., Mai M., Kitadai, Y, Bucana, CD., and Ellis, L.M., 1996, Significance of vessel count and vascular endothelial growth factor ant its receptor (KDR) in intestinal-type gastric cancer, Clin, Cancer Res, 2:1679–1684.Google Scholar
  98. Takano S., Gately S., Neville, M.E., Herblin, W.F., Gross, J.L., Engelhard H., Perricone M., Eidsvoog K., and Brem, S., 1994, Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation and induction of urokinase-type plasminogen activator, Cancer Res. 54:2654–2660.PubMedGoogle Scholar
  99. Taraboletti G., Garofalo A., Belotti D., Drudis T., Borsotti P., Scanziani E., Brown, P.D., and Giavazzi, G. 1995, Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix meta?loproteinases, J. Natl Cancer Inst. 87: 293–298.PubMedCrossRefGoogle Scholar
  100. Teicher, B.A., Holden, S.A., Ara G., Korbut T., and Menon, K., 1996, Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma, Cancer Chemother. Pharmacol. 38: 169–177.PubMedCrossRefGoogle Scholar
  101. Turnbull, J.E., and Gallagher, J.T., 1993, Heparan sulfate: functional role as modulator of fibroblast growth factor activity, Biochem. Soc. T. 21:477–482.Google Scholar
  102. Vlodavski, L, Folkman J., Sullivan, R, Friedman R., Ishai-Michaell R., Sasse J., and Klagsbrun, M., 1987a, Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix, Proc. Natl. Acad Sci. USA 84:2292–2296.CrossRefGoogle Scholar
  103. Vlodavski I., Friedman R., Sullivan R., Sasse J., and Klagsbrun, M., 1987b, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted, J. Cell. Physiol. 131.402–408.CrossRefGoogle Scholar
  104. Waltz, T.M., Abdiu A., Wingren S., Smeds S., Larsson, S.E., and Wasteson, A., 1991, Suramin inhibits growth of human osteosarcoma xenografts in nude mice, Cancer Res. 51:3585–3589.Google Scholar
  105. Wang Y., and Becker, D., 1997, Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth, Nature Medicine 3:887–893.PubMedCrossRefGoogle Scholar
  106. Weich H., Iberg N., Klagsbrun, M. and Folkman, J, 1991, Transcriptional regulation of basic fibroblast growth factor gene expression in capillary endothelial cells, J. Cell Biochem. 47:158–194.PubMedCrossRefGoogle Scholar
  107. Witte L., Fuka Z., Haimovitz, F.A., Vlodavski I., Goodman, D.S., and Eldor, A., 1989, Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells, Cancer Res. 49:5066–5072.PubMedGoogle Scholar
  108. Zagzag D., Miller, DC, Sato Y., Rifkin, D.B., and Burstein, D.E., 1990, Immunohistochemical localization of basic fibroblast growth factor in astrocytomas, Cancer Res. 50:7393–7398.PubMedGoogle Scholar
  109. Ziche, M, Parenti A., Ledda F., Del’Era P., Granger, H.J., Maggi, C.A., and Presta, M, 1997, Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF, Circ. Res. in press.Google Scholar
  110. Zugmaier, G, Lippman, M.E., and Wellstein, A., 1992, Inhibition by pentosan polysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockage by PPS of tumor growth in animals, 1992, J. Natl. Cancer Inst. 84:1716–1724.PubMedCrossRefGoogle Scholar
  111. Yamanaka Y., Friess H., Buchler, M, Beger, H.G., Uchida E., Onda, M, and Kobrin, M.S., 1993, Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage, Cancer. Res. 53:5289–5296.PubMedGoogle Scholar
  112. Yayon A., Klagsbrun M., Esko, J.D., Leder P., and Ornitz, D.M., 1991, Cell surface, heparinlike molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.PubMedCrossRefGoogle Scholar
  113. Yeoman, L.C., 1993, An autocrine model for cell-associated and matrix-associated fibroblast growth factor, Oncol Res. 5:489–499.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Marco Presta
    • 1
  • Marco Rusnati
    • 1
  • Patrizia Dell’Era
    • 1
  • Elena Tanghetti
    • 1
  • Chiara Urbinati
    • 1
  • Roberta Giuliani
    • 1
  • Daria Leali
    • 1
  1. 1.Unit of General Pathology and Immunology, Department of Biomedical Sciences and BiotechnologyUniversity of BresciaBresciaItaly

Personalised recommendations