Inferring the Structure of Porous Materials Using Superfluid Helium

  • H. A. Snyder
Part of the Advances in Cryogenic Engineering book series (ACRE)


The operation of a phase separator for superfluid helium depends on the internal structure of the porous plug. We show how a phase separator apparatus can be used to study the flow through porous materials. This method appears to be better than conventional methods currently in use. Superfluid helium is a preferable test substance over ordinary fluids for two reasons. First, it has nearly zero contact angle for most substrates. Second, the superfluid film insulates the meniscus from surface contamination that causes variations of the contact angle. We present the theory of operation based on the governing equations. The largest term of the pressure balance equations is the jump across the meniscus. The jump is inversely proportional to the hydraulic diameter. We exploit this dependence to find the statistical properties of the hydraulic diameter that are helpful in predicting flows. We find the power spectrum of the hydraulic diameter from the measured data. All the useful probability distributions can be found from the power spectrum. We show how hysteresis loci arise due to the porous structure and discuss the probability distributions necessary to analyze hysteresis loci.


Contact Angle Phase Separator Hydraulic Diameter Pressure Jump Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Petrac and P. Mason, Infrared Astronomical Satellite superfluid helium tank temperature control, Proc.1983 Space Helium Dewar Conference 163-169, University of Alabama (1984).Google Scholar
  2. 2.
    A. R. Urbach and P. V. Mason, IRAS cryogenic flight performance report, Adv. Cryo. Eng. 29:651–667 (1984).CrossRefGoogle Scholar
  3. 3.
    S. M. Volz, M. J. DiPirro, S. H. Castles, M. G. Rychkowitsch and R. Hopkins, Adv. Cryo. Eng. 37:1183–1192(1992).CrossRefGoogle Scholar
  4. 4.
    J. G. Tuttle, M. J. DiPirro and P. J. Shirron, Adv. Cryo. Eng. 39:121(1994).CrossRefGoogle Scholar
  5. 5.
    U. Schotte, He II phase separation with slits and porous plugs for space cryogenics, Cryogenics, 24:536–547 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    M. J. DiPirro and J. Zahniser, The liquid/vapor phase boundary in a porous plug, Adv. Cryo. Eng. 35:173–179 (1990).CrossRefGoogle Scholar
  7. 7.
    A. Nakano, D. Petrac and C. Paine, He II liquid/vapor phase separator for large dynamic range operation, Cryogenics 36:823–828 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    S. W. K. Yuan, D. J. Frank and C. Lagas, The dependence of choked flow and break through on pore size distribution in vapor-liquid phase separators of He II using porous media, Adv. Cryo. Eng. 41:1189–1194 (1996).CrossRefGoogle Scholar
  9. 9.
    S. W. K. Yuan, A. R. Urbach, S. M. Volz and J. H. Lee, Vapor-liquid separation of He II, Cryogenics 38:921–925 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    H. A. Snyder and A. J. Mord, Modeling superfluid phase separator systems, Adv. Cryo. Eng. 43:1377–1384 (1998).Google Scholar
  11. 11.
    G. L. Mills, A. J. Mord and H. A. Snyder, Pressure maxima in the flow of superfluid 4helium, Phys Rev. B 49:666–669 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    K. R. Atkins and Y. Narahara, Surface tension of superfluid helium, Phys. Rev, 138:437–441 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    W. C. Reynolds and H. M. Satterlee, Liquid propellant behavior at low and zero g, NASA SP 106: 387–439 (1966).ADSGoogle Scholar
  14. 14.
    H. A. Snyder and A. J. Mord, Calculation of He II flow in tubes, J. Low Temp. Physics 86:177–209 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    S. O. Rice, Mathematical analysis of random noise, Bell Tel. J. 23:282 (1944); 25:46 (1945).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D. Elliott, JPL report, JPLD-11412 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • H. A. Snyder
    • 1
  1. 1.University of Colorado at Boulder and Ball Aerospace & Technologies Corp.BoulderUSA

Personalised recommendations