Advertisement

Cumulants and the Contracted Schrödinger Equation

  • David A. Mazziotti
Part of the Mathematical and Computational Chemistry book series (MACC)

Abstract

The quantum-mechanical wave function of an N-electron system contains much more information than is required to compute the expectation values for most observables. Because the interactions between electrons are pairwise within the Hamiltonian, the energy may be determined exactly through a knowledge of the two-particle reduced density matrix (2-RDM) [1, 2]. Unlike the unknown dependence of the energy on the one-particle density in density functional theory (DFT) [3], the dependence of the energy on the 2-RDM is linear. The 2-RDM, however, has not replaced the wave function as the fundamental parameter for many-body calculations because not every 2-particle density matrix is derivable from an N-particle wave function. The need for a simple set of necessary and sufficient conditions for ensuring that the 2-RDM may be represented by an N-particle wave function is known as the N-representability problem [4, 5]. Recent theoretical and computational results with the contracted Schrödinger equation (CSE), also known as the density equation, indicate that the CSE offers an accurate, versatile method for generating the 2-RDM without the wave function [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In the present article we will review the foundations of the CSE method.

Keywords

Wave Function Schrodinger Equation Couple Cluster Grassmann Algebra Reconstruction Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. McWeeney, Rev. Mod. Phys. 32, 335 (1960).CrossRefGoogle Scholar
  2. 2.
    D. Ter Haar, Rept Progr. Phys. 24, 304 (1961).CrossRefGoogle Scholar
  3. 3.
    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).Google Scholar
  4. 4.
    A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).CrossRefGoogle Scholar
  5. 5.
    C. Garrod and J. Percus, J. Math. Phys. 5, 1756 (1964).CrossRefGoogle Scholar
  6. 6.
    F. Colmenero, C. Perez del Valle, and C. Valdemoro, Phys. Rev.A47, 971 (1993).Google Scholar
  7. 7.
    F. Colmenero and C. Valdemoro, Phys. Rev.A47, 979 (1993).Google Scholar
  8. 8.
    F. Colmenero and C. Valdemoro, Int. J. Quant. Chem. 51, 369 (1994).CrossRefGoogle Scholar
  9. 9.
    C. Valdemoro, L. M. Tel, and E. Perez-Romero, Adv. in Quant. Chem. 28, 33 (1997).CrossRefGoogle Scholar
  10. 10.
    H. Nakatsuji and K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996).CrossRefGoogle Scholar
  11. 11.
    K. Yasuda and H. Nakatsuji, Phys. Rev. A56, 2648 (1997).Google Scholar
  12. 12.
    D. A. Mazziotti, Phys. Rev.A57, 4219 (1998).Google Scholar
  13. 13.
    D. A. Mazziotti, Chem. Phys. Lett. 289, 419 (1998).CrossRefGoogle Scholar
  14. 14.
    D. A. Mazziotti, Int. J. Quant. Chem. 70, 557 (1998).CrossRefGoogle Scholar
  15. 15.
    K. Yasuda, Phys. Rev.A59, 4133 (1999).Google Scholar
  16. 16.
    D. A. Mazziotti, Phys. Rev.A60, 3618 (1999).Google Scholar
  17. 17.
    D. A. Mazziotti, Phys. Rev.A60, 4396 (1999).Google Scholar
  18. 18.
    L. Cohen and C. Frishberg, Phys. Rev.A13, 927 (1976).Google Scholar
  19. 19.
    H. Nakatsuji, Phys. Rev.A14, 41 (1976).Google Scholar
  20. 20.
    J. E. Harriman, Phys. Rev.A19, 1893 (1979).Google Scholar
  21. 21.
    C. Valdemoro, in Density Matrices and Density Functionals, Proceedings of the A. J. Coleman Symposium, Kingston, Ontario, 1985, R. Erdahl and V. Smith (eds.), Reidel, Dordrecht (1987).Google Scholar
  22. 22.
    P. Hohenberg and W. Kohn, Phys. Rev.B136, 864 (1964).CrossRefGoogle Scholar
  23. 23.
    P. C. Hohenberg, W. Kohn, and L. J. Sham, Adv. in Quant. Chem. 21, 7 (1990).CrossRefGoogle Scholar
  24. 24.
    M. Rosina, in Reduced Density Operators with Application to Physical and Chemical Systems, Queens Papers in Pure and Applied Mathematics No. 11, A. J. Coleman and R. M. Erdahl (eds.), Queen’s University, Kingston, Ontario (1968).Google Scholar
  25. 25.
    T. D. Crawford and H. F. Schaefer III, Rev. Comp. Chem. (in press).Google Scholar
  26. 26.
    R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989).CrossRefGoogle Scholar
  27. 27.
    H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. B62, 188, 199, 211 (1965); D. Agassi, H. J. Lipkin, and N. Meshkov, Nucl. Phys. B86, 321 (1966).Google Scholar
  28. 28.
    M. V. Mihailovic and M. Rosina, Nucl. Phys.A130, 386 (1969).Google Scholar
  29. 29.
    P. R. Surjân, Second Quantized Approach to Quantum Chemistry: An Elementary Introduction, Springer-Verlag, New York (1989).CrossRefGoogle Scholar
  30. 30.
    M. Levy, Adv. in Quant. Chem. 21, 69 (1990).CrossRefGoogle Scholar
  31. 31.
    T. L. Gilbert, Phys. Rev.B12, 2111 (1975).Google Scholar
  32. 32.
    J. E. Harriman, Phys. Rev.A24, 680 (1981).Google Scholar
  33. 33.
    R. Kubo, J. Phys. Soc. (Japan) 17, 1100 (1962).CrossRefGoogle Scholar
  34. 34.
    J. W. Negele and H. Orland, Quantum Many-particle Systems, Addison-Wesley Publishing, New York (1988).Google Scholar
  35. 35.
    W. Ślebodziñski, Exterior Forms and their Applications, Polish Scientific Publishers, Warsaw (1970).Google Scholar
  36. 36.
    F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).CrossRefGoogle Scholar
  37. 37.
    A. J. Coleman and I. Absar, Int. J. Quant. Chem. 18, 1279 (1980).CrossRefGoogle Scholar
  38. 38.
    M. E. Casida and J. E. Harriman, Int. J. Quant. Chem. 30, 161 (1986).CrossRefGoogle Scholar
  39. 39.
    G. Strang, Linear Algebra and Its Appications 3rd ed., Harcourt Brace Jo-vanovich, San Diego (1988).Google Scholar
  40. 40.
    J. E. Harriman, Phys. Rev.A17, 1249 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • David A. Mazziotti
    • 1
    • 2
  1. 1.Department of ChemistryHarvard UniversityCambridge
  2. 2.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations