Skip to main content

Part of the book series: Mathematical and Computational Chemistry ((MACC))

Abstract

The quantum-mechanical wave function of an N-electron system contains much more information than is required to compute the expectation values for most observables. Because the interactions between electrons are pairwise within the Hamiltonian, the energy may be determined exactly through a knowledge of the two-particle reduced density matrix (2-RDM) [1, 2]. Unlike the unknown dependence of the energy on the one-particle density in density functional theory (DFT) [3], the dependence of the energy on the 2-RDM is linear. The 2-RDM, however, has not replaced the wave function as the fundamental parameter for many-body calculations because not every 2-particle density matrix is derivable from an N-particle wave function. The need for a simple set of necessary and sufficient conditions for ensuring that the 2-RDM may be represented by an N-particle wave function is known as the N-representability problem [4, 5]. Recent theoretical and computational results with the contracted Schrödinger equation (CSE), also known as the density equation, indicate that the CSE offers an accurate, versatile method for generating the 2-RDM without the wave function [617]. In the present article we will review the foundations of the CSE method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. McWeeney, Rev. Mod. Phys. 32, 335 (1960).

    Article  Google Scholar 

  2. D. Ter Haar, Rept Progr. Phys. 24, 304 (1961).

    Article  Google Scholar 

  3. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  4. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

    Article  Google Scholar 

  5. C. Garrod and J. Percus, J. Math. Phys. 5, 1756 (1964).

    Article  CAS  Google Scholar 

  6. F. Colmenero, C. Perez del Valle, and C. Valdemoro, Phys. Rev.A47, 971 (1993).

    Google Scholar 

  7. F. Colmenero and C. Valdemoro, Phys. Rev.A47, 979 (1993).

    Google Scholar 

  8. F. Colmenero and C. Valdemoro, Int. J. Quant. Chem. 51, 369 (1994).

    Article  CAS  Google Scholar 

  9. C. Valdemoro, L. M. Tel, and E. Perez-Romero, Adv. in Quant. Chem. 28, 33 (1997).

    Article  CAS  Google Scholar 

  10. H. Nakatsuji and K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996).

    Article  CAS  Google Scholar 

  11. K. Yasuda and H. Nakatsuji, Phys. Rev. A56, 2648 (1997).

    Google Scholar 

  12. D. A. Mazziotti, Phys. Rev.A57, 4219 (1998).

    Google Scholar 

  13. D. A. Mazziotti, Chem. Phys. Lett. 289, 419 (1998).

    Article  CAS  Google Scholar 

  14. D. A. Mazziotti, Int. J. Quant. Chem. 70, 557 (1998).

    Article  CAS  Google Scholar 

  15. K. Yasuda, Phys. Rev.A59, 4133 (1999).

    Google Scholar 

  16. D. A. Mazziotti, Phys. Rev.A60, 3618 (1999).

    Google Scholar 

  17. D. A. Mazziotti, Phys. Rev.A60, 4396 (1999).

    Google Scholar 

  18. L. Cohen and C. Frishberg, Phys. Rev.A13, 927 (1976).

    Google Scholar 

  19. H. Nakatsuji, Phys. Rev.A14, 41 (1976).

    Google Scholar 

  20. J. E. Harriman, Phys. Rev.A19, 1893 (1979).

    Google Scholar 

  21. C. Valdemoro, in Density Matrices and Density Functionals, Proceedings of the A. J. Coleman Symposium, Kingston, Ontario, 1985, R. Erdahl and V. Smith (eds.), Reidel, Dordrecht (1987).

    Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev.B136, 864 (1964).

    Article  Google Scholar 

  23. P. C. Hohenberg, W. Kohn, and L. J. Sham, Adv. in Quant. Chem. 21, 7 (1990).

    Article  CAS  Google Scholar 

  24. M. Rosina, in Reduced Density Operators with Application to Physical and Chemical Systems, Queens Papers in Pure and Applied Mathematics No. 11, A. J. Coleman and R. M. Erdahl (eds.), Queen’s University, Kingston, Ontario (1968).

    Google Scholar 

  25. T. D. Crawford and H. F. Schaefer III, Rev. Comp. Chem. (in press).

    Google Scholar 

  26. R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989).

    Article  CAS  Google Scholar 

  27. H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. B62, 188, 199, 211 (1965); D. Agassi, H. J. Lipkin, and N. Meshkov, Nucl. Phys. B86, 321 (1966).

    Google Scholar 

  28. M. V. Mihailovic and M. Rosina, Nucl. Phys.A130, 386 (1969).

    Google Scholar 

  29. P. R. Surjân, Second Quantized Approach to Quantum Chemistry: An Elementary Introduction, Springer-Verlag, New York (1989).

    Book  Google Scholar 

  30. M. Levy, Adv. in Quant. Chem. 21, 69 (1990).

    Article  CAS  Google Scholar 

  31. T. L. Gilbert, Phys. Rev.B12, 2111 (1975).

    Google Scholar 

  32. J. E. Harriman, Phys. Rev.A24, 680 (1981).

    Google Scholar 

  33. R. Kubo, J. Phys. Soc. (Japan) 17, 1100 (1962).

    Article  Google Scholar 

  34. J. W. Negele and H. Orland, Quantum Many-particle Systems, Addison-Wesley Publishing, New York (1988).

    Google Scholar 

  35. W. Ślebodziñski, Exterior Forms and their Applications, Polish Scientific Publishers, Warsaw (1970).

    Google Scholar 

  36. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).

    Article  CAS  Google Scholar 

  37. A. J. Coleman and I. Absar, Int. J. Quant. Chem. 18, 1279 (1980).

    Article  CAS  Google Scholar 

  38. M. E. Casida and J. E. Harriman, Int. J. Quant. Chem. 30, 161 (1986).

    Article  Google Scholar 

  39. G. Strang, Linear Algebra and Its Appications 3rd ed., Harcourt Brace Jo-vanovich, San Diego (1988).

    Google Scholar 

  40. J. E. Harriman, Phys. Rev.A17, 1249 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazziotti, D.A. (2000). Cumulants and the Contracted Schrödinger Equation. In: Cioslowski, J. (eds) Many-Electron Densities and Reduced Density Matrices. Mathematical and Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4211-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4211-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6890-8

  • Online ISBN: 978-1-4615-4211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics