Skip to main content

Abstract

Arabinogalactan-proteins (AGPs) were associated with reproductive tissues in the early days of their discovery (Nothnagel 1997). In particular, the stigmas and styles of flowering plants were abundant sources of AGPs, as revealed by Yariv phenylglycoside staining [(β-D-glucosyl) Yariv phenylglycoside [(β-D-G1C)3]], a red-colored reagent thought to bind AGPs (Yariv et al 1962). Several species were examined in detail using the (β-D-Glc)3 to precipitate the stigma and stylar AGPs (Clarke et al 1979, Gleeson and Clarke 1979 1980, Fincher et al 1983, Miki-Hirosige et al 1987). Only recently has DNA sequencing provided us with knowledge of the protein component of some of these large proteoglycans, and the first AGPs sequenced were from stylar transmitting tract tissues (Du et al 1994, Mau et al 1995). The carbohydrate branches of AGPs consist mainly of arabinose and galactose, and the protein core is typically rich in Hyp/Pro, Ala and Ser, but the entire molecular structure of any AGP is unknown (Nothnagel 1997). The exciting recent discovery that some plasma membrane AGPs have glycosylphosphatidylinositol anchors has suggested the possibility of their involvement in signaling cascades at the cell surface (Youl et al 1998, Schultz et al 1998, Svetek et al 1999). Polyclonal and monoclonal antibodies to AGPs have been produced with polysaccharide epitopes of mostly unknown composition (Pennell et al 1991, Knox 1992). There is good circumstantial evidence that they bind AGPs. These studies have confirmed that AGPs are abundant in stigmas, styles, and pollen tubes of many species. The antibodies have revealed the diversity of expression patterns for AGPs in development and have ignited interest in their roles in plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M. A., Harris, P. J., Bonig, I., and Clarke, A. E., 1987, Immuno-gold localization of α-L-arabinofuranosyl residues in pollen tubes of Nicotiana alata Link et Otto, Planta 171: 438–442.

    Article  CAS  Google Scholar 

  • Brown, I., Trethowan, J., Kerry, M., Mansfield, J., and Bolwell, G. P., 1998, Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells, Plant J. 15: 333–343.

    Article  CAS  Google Scholar 

  • Clarke, A. E., Anderson, R. L., and Stone, B. A., 1979, Form and function of arabinogalactans and arabinogalactan-proteins, Phytochemistry 18: 521–540.

    Article  CAS  Google Scholar 

  • Du, H., Simpson, R. J., Moritz, R. L., Clarke, A. E., and Bacic, A., 1994, Isolation of the protein backbone of an arabinogalactan-protein from the styles of Nicotiana alata and characterization of a corresponding cDNA, Plant Cell 6: 1643–1653.

    PubMed  CAS  Google Scholar 

  • Ferguson, C., Teeri, T. T., Siika-aho, M., Read, S. M., and Bacic, A., 1998, Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum, Planta 206: 452–460.

    Article  CAS  Google Scholar 

  • Fincher, G. B., Stone, B. A., and Clarke, A. E., 1983, Arabinogalactan-proteins; structure, biosynthesis, and function, Annu. Rev. Plant Physiol. 34: 47–70.

    Article  CAS  Google Scholar 

  • Gleeson, P. A., and Clarke, A. E., 1979, Structural studies on the major component of Gladiolus style mucilage, an arabinogalactan-protein, Biochem. J. 181: 607–621.

    PubMed  CAS  Google Scholar 

  • Gleeson, P. A., and Clarke, A. E., 1980, Arabinogalactans of sexual and somatic tissues of Gladiolus and Lilium, Phytochemistry 19: 1777–1782.

    Article  CAS  Google Scholar 

  • Harris, P. J., Freed, K. Anderson, M. A., Weinhandl, J. A., and Clarke, A. E., 1987, An enzyme-linked immunosorbent assay (ELISA) for in vitro pollen growth based on binding of a monoclonal antibody to the pollen-tube surface, Plant Physiol. 84: 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke, T. L., Feijó, J. A., Hackett, G. R., and Hepler, P. K., 1997, Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010.

    PubMed  CAS  Google Scholar 

  • Jauh, G. Y., and Lord, E. M., 1996, Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta 199: 251–261.

    Article  CAS  Google Scholar 

  • Knox, J.P., 1992, Molecular probes for the plant cell surface, Protoplasma 167: 1–9.

    Article  CAS  Google Scholar 

  • Lennon, K. A., Roy, R., Hepler, P. K., and Lord, E. M., 1998, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sex Plant Reprod. 11: 49–59.

    Article  Google Scholar 

  • Li, Y-Q., Bruun, L., Pierson, E., and Cresti, M., 1992, Periodic deposition of arabinogalactan epitopes in the cell wall of pollen tubes of Nicotiana tabacum L., Planta 188: 532–538.

    Article  CAS  Google Scholar 

  • Li, Y-Q., Faleri, C., Geitmann, A., Zhang, H-Q., and Cresti, M., 1995, Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189: 26–36.

    Article  CAS  Google Scholar 

  • Lord, E. M., Walling, L. L., and Jauh, G. Y., 1996, Cell adhesion in plants and its role in pollination, In Membranes: Specialized Functions in Plants (M. Smallwood, J. P. Knox, and D. J. Bowles, eds.), Bios Scientific Oxford, pp. 21–38.

    Google Scholar 

  • Mau, S-L., Chen, C-G., Pu, Z-Y., Moritz, R. L., Simpson, R. J., Bacic, A., and Clarke, A. E., 1995, Molecular cloning of cDNAs encoding the protein backbones of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata, Plant J. 8: 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Meikle, P. J., Bonig, I., Hoogenraad, N. J., Clarke, A. E., and Stone, B. A., 1991, The location of (1→3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1→3)-β-glucan-specific monoclonal antibody, Planta 185: 1–8.

    Article  CAS  Google Scholar 

  • Miki-Hirosige, H., Hoek, I. H. S., and Nakamura S., 1987, Secretions from the pistil of Lilium longiflorum, Am. J. Bot. 74: 1709–1715.

    Article  CAS  Google Scholar 

  • Nothnagel, E. A., 1997, Proteoglycans and related components in plant cells, Int. Rev. Cytol. 174: 195–291.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. Y., Jauh, G-Y., Mollet, J-C., Eckard, K. J., Nothnagel, E. A., Walling, L. L., and Lord, E. M., 2000, A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix, Plant Cell 12: 151–163.

    PubMed  CAS  Google Scholar 

  • Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., and Roberts, K., 1991, Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers, Plant Cell 3: 1317–1326.

    PubMed  CAS  Google Scholar 

  • Pierson, E. S., Miller, D. D., Callaham, D. A., Shipley, A. M., Rivers, B. A., Cresti, M., and Hepler, P. K., 1994, Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: Effect of BAPTA-type buffers and hypertonic media, Plant Cell 6: 1815–1828.

    PubMed  CAS  Google Scholar 

  • Pierson, E. S., Miller, D. D., Callaham, D. A., van Aken, J., Hackett, G., and Hepler, P. K., 1996, Tip-localized calcium entry fluctuates during pollen tube growth, Dev. Biol. 174: 160–173.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., Eckard, K. J., Lancelle, S., Hepler, P. K., and Lord, E. M., 1997, High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes, Protoplasma 200: 87–98.

    Article  Google Scholar 

  • Roy, S., Jauh, G. Y., Hepler, P. K., and Lord, E. M., 1998, Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube, Planta 204: 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S. J., Holdaway-Clarke, T. L., Hackett, G. R., Kunkel, J. G., Lord, E. M., and Hepler, P. K., 1999, Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J. 19: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, C., Gilson, P., Oxley, D., Youl, J., and Bacic, A., 1998, GPI-anchors on arabinogalactan-proteins: implications for signalling in plants, Trends Plant Sci. 3: 426–431.

    Article  Google Scholar 

  • Serpe, M. D., and Nothnagel, E. A., 1994, Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation, Planta 193: 542–550.

    Article  CAS  Google Scholar 

  • Svetek, J., Yadav, M. P., and Nothnagel, E. A., 1999, Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan-proteins, J. Biol. Chem. 274: 14724–14733.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Bacic, A., Harris, P. J., and Read, S. M., 1998, Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto, Planta 205: 380–388.

    Article  PubMed  CAS  Google Scholar 

  • Van der Woude, W. J., Morré, D. J., and Bracker, C. E., 1971, Isolation and characterization of secretory vesicles in germinated pollen of Lilium longiflorum, J. Cell Sci. 8: 331–351.

    Google Scholar 

  • Yariv J., Rapport, M. M., and Graf, L., 1962, The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides, Biochem J. 85: 383–388.

    PubMed  CAS  Google Scholar 

  • Youl, J. J., Bacic, A., and Oxley, D., 1998, Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors, Proc. Natl. Acad. Sci. USA 95: 7921–7926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lord, E.M., Holdaway-Clarke, T., Roy, S.J., Jauh, G.Y., Hepler, P.K. (2000). Arabinogalactan-Proteins in Pollen Tube Growth. In: Nothnagel, E.A., Bacic, A., Clarke, A.E. (eds) Cell and Developmental Biology of Arabinogalactan-Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4207-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4207-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6888-5

  • Online ISBN: 978-1-4615-4207-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics