Principles and Horizons of Magnetic Resonance Imaging

  • Shoogo Ueno
  • Norio Iriguchi
Part of the Advances in Electromagnetic Fields in Living Systems book series (AEFL, volume 3)


Magnetic resonance imaging (MRI) is a way of making tomographic images of the body non-invasively. Protons in the body can act like tiny bar magnets, with a north pole and a south pole. When an external magnetic field is applied across a part of the body, each little magnet lines up with the external magnetic field. If a radiofrequency (rf) wave is then transmitted into the tissues, some of the magnets are induced by the energy from the rf wave. The if wave is then turned off, and subsequently the magnets rebroadcast a signal of the same frequency as the original rf wave. A rf coil picks up the signal from the atomic magnets, and a computer can process the signal and reconstruct an image from the signal.


Nuclear Magnetic Resonance Magnetic Resonance Angiography Flip Angle Spin Echo Magnetic Resonance Imaging Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandettini, P.A., E.C. Wong, R.S. Hinks, RS. Tikofsky, and J.S. Hyde,1992, Time course EPI of human brain function during task activation. Magn. Reson. Med. 25: 390.PubMedCrossRefGoogle Scholar
  2. Bloch, F., W.W. Hansen, and M. Packard, 1946, The nuclear induction experiment. Phys. Rev. 70: 474.CrossRefGoogle Scholar
  3. Bomsdorf, H., T. Helzel, D. Kunz, P. Roeschmann, O. Tschendel, and J. Wieland, 1988, Spectroscopy and imaging with a 4 Tesla whole-body MR system. NMR Biomed. 1: 151.PubMedCrossRefGoogle Scholar
  4. Edelman, R.R., B. Siewert, D.G. Darby, V. Thangaraj, A.C. Nobre, M.M. Mesulam, and S. Warach, 1994, Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radiofrequency. Radiology 192: 513.PubMedGoogle Scholar
  5. Edelstein, W.A., J.M.S. Hutchison, G. Johnson, and T. Redpath, 1980, Spin warp NMR imaging and applications to whole body imaging. Phys. Med Biol. 25: 751.PubMedCrossRefGoogle Scholar
  6. Ernst, R.R. and W.A. Anderson, 1966, Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum. 37: 93.CrossRefGoogle Scholar
  7. Frahm, J., H. Bruhn, K.D. Merboldt, and W. Haenicke, 1992, Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J. Magn. Reson. Imag. 2: 501.CrossRefGoogle Scholar
  8. Gadian, D.G. and F.N.H. Robinson, 1979, Radiofrequency losses in NMR experiments on electrically conducting samples. J Magn. Reson. 34: 449.Google Scholar
  9. Hahn, E.L., 1950, Spin echoes. Phys. Rev. 80: 580.CrossRefGoogle Scholar
  10. Homak, J.P., J. Szumowski, and R.G. Bryant, 1988, Magnetic field mapping. Magn. Reson. Med. 6: 158.CrossRefGoogle Scholar
  11. Insko, E.K. and L. Bolinger, 1993, Mapping of the radiofrequency field. J. Magn. Reson. A 103: 82.CrossRefGoogle Scholar
  12. Kohno, K., M. Hoehn-Berlage, G. Mies, T. Back, and K.A. Hossmann, 1995, Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn. Reson. Imag. 13: 73.CrossRefGoogle Scholar
  13. Lauterbur, P.C., 1973, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190.CrossRefGoogle Scholar
  14. LeBihan, D. and R Turner, 1992, Diffusion and perfusion. in: Magnetic Resonance Imaging Mosby Year Books, St. LouisGoogle Scholar
  15. LeBihan, D., R. Turner, T.A. Zeffiro, C.A. Cuenod, P. Jezzard, and V. Bonnerot, 1993, Activation of human primary visual cortex during visual recall: an MRI study. Proc. Natl. Acad Sci. USA. 90: 1802.CrossRefGoogle Scholar
  16. Ljunggren, S., 1983, A simple graphical representation of Fourier-based imaging method. J. Magn. Reson. 54: 338.Google Scholar
  17. McCauthy, G., A.M. Blamire, D.L. Rothman, R. Gruetter, and R.G. Schulman, 1993, Echo-planar MRI studies of frontal cortex activation during word generation in humans. Proc. Natl. Acad Sci. USA. 90: 4952.CrossRefGoogle Scholar
  18. Metheall, P., D.C. Barger, R.H. Smallwood, and B.H. Brown, 1996, Three-dimensional electrical impedance tomography. Nature 380: 509.CrossRefGoogle Scholar
  19. Mintrovich, J., M.E. Mosley, L. Chileuitt, H. Shimizu, Y. Cohen, and P.R. Weinstein, 1991, Comparison of diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn. Reson. Med. 18: 39.CrossRefGoogle Scholar
  20. Mosley, M.E., Y. Cohen, J. Mintorovich, L. Chileuitt, H. Shimizu, J. Kucharczyk, F.M. Wendland, and P.R. Weinstein, 1990, Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-MRI and spectroscopy. Magn. Reson. Med. 14: 330.CrossRefGoogle Scholar
  21. Ogawa, S. and T-M. Lee, 1990, Magnetic resonance imaging of blood vessels at high field: in vivo and in vitro measurements and image simulation. Magn. Reson. Med. 16: 9.PubMedCrossRefGoogle Scholar
  22. Ogawa, S., T-M. Lee, A.S. Nayak, and P. Glynn, 1990, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic field. Magn. Reson. Med. 14: 68.PubMedCrossRefGoogle Scholar
  23. Ong, K.C., H. Wen, A.S. Chesnick, S. Duewell, F.A. Jaffer, and R.S. Balaban, 1995, Radiofrequency shielding of surface coils at 4.0 T. J. Magn. Reson. Imag. 5: 773.CrossRefGoogle Scholar
  24. Pennock, J.M., F.W. Cowan, J.E. Schweiso, A. Oatridge, M.A. Rutherfard, L.M.S. Pubowitz, and G.M. Bydder, 1994, Clinical role of diffusion-weighted imaging: neonatal studies. MAGMA 2: 273.CrossRefGoogle Scholar
  25. Purcell, E.M., H.C. Torroy, and R.V. Pound, 1946, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69: 37.CrossRefGoogle Scholar
  26. Rueckert, L., I. Appollonio, J. Grafmaii, P. Jezzard, R Johnson, Jr., D. LeBihan, and R. Turner, 1994, MRI functional activation of the left frontal cortex during covert word production. J. Neuroimaging 4: 67.PubMedGoogle Scholar
  27. Stejskal, E.O. and J.E. Tanner, 1965, Spin diffusion measurements: spin-echoes in the presence of time-dependent field gradient. J Chem. Phys. 42: 288.CrossRefGoogle Scholar
  28. Stejskal, E.O., 1965, Use of spin echo in pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43: 3597.CrossRefGoogle Scholar
  29. Stollberger, R and P. Wach, 1996, Imaging of the active B1 Field in vivo. Magn. Reson. Med. 35: 246.CrossRefGoogle Scholar
  30. Turner, R., 1993, Gradient coil design: a review of method. Magn. Reson. Imag. 11: 903.CrossRefGoogle Scholar
  31. Turner, R, 1991, D. LeBihan, C.T.W. Moonen, D. Despres, and J. Frank, Echo-planar time course MRI of cat brain by oxygenation changes. Magn. Reson. Med. 22: 159.PubMedCrossRefGoogle Scholar
  32. Ueno, S. and N. Iriguchi, 1998, Impedance magnetic resonance imaging: a method for imaging of impedance distribution based on magnetic resonance imaging. J. Appl. Phys. 83: 6450.CrossRefGoogle Scholar
  33. Verheul, H.B., R. Balazs, J.W. Berkelbach van der Sprenkel, C.A.F. Tulleken, K. Nicolay, K.S. Tamminga, and M. van Lookeren Campagne, 1994, Comparison of diffusion weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96.PubMedCrossRefGoogle Scholar
  34. Warach, S., D. Chien, W. Li, M. Ronthal, and RR. Edelman, 1992, Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42: 1717.PubMedCrossRefGoogle Scholar
  35. Williams, D S, J A Detre, J.S. Leigh, and A.P. Koretsky, 1992, Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad Sci. USA. 89: 212.PubMedCrossRefGoogle Scholar
  36. Zhang, W., D.S. Williams, and A.P. Koretsky, 1993, Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn. Reson. Med. 29: 416.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Shoogo Ueno
    • 1
  • Norio Iriguchi
    • 2
  1. 1.Department of Biomedical EngineeringGraduate School of Medicine University of TokyoTokyoJapan
  2. 2.Siemens-Asahi Medical Technologies LimitedTokyoJapan

Personalised recommendations