Advertisement

Long-/Short-Term Variations of Monsoon Climate and its Tele-Connection to Global Change

High Resolution Grain Size Records of Siliciclastic Sediments from the South China Sea
  • Luejiang Wang
  • Michael Sarnthein

Abstract

Core 17940-1/2 (20°07′N, 117°23′E; 1727-1728m water depth) from the South China Sea provides a high resolution marine sediment record, up to bidecadal in the Holocene and 80–100 years in last glacial time, for reconstructing the East Asian monsoon climate change during the past 41,000 years. A fundamental change happened in the monsoon climate during the last deglaciation, when the winter monsoon dominated glacial regime changed to a summer monsoon dominated Holocene regime. Comparison to the GISP2 ice core record suggested climatic tele-connections between the low latitude East Asian Monsoon climate and that over the high latitude Greenland during the last glacial period. Episodic short-term periods of increased summer monsoon precipitation and decreased winter monsoon wind intensity are correlated to the warm periods of Dansgaard-Oeschger events 1–10. Periods of relatively intensified winter monsoon wind and reduced summer monsoon precipitation are correlated to the Heinrich events 1–4. The possible link in this tele-connection is believed to lie in the oscillation in atmospheric circulation rather than oceanic thermohaline circulation, with a counterbalance between the westerlies and the monsoon wind. Whenever the high latitude polar Greenland was warmed up, the westerlies may have been reduced in strength and/or extension. Consequently, it is postulated that the summer monsoon circulation would have culminated in East Asia due to the increased contrast in land-sea air pressure during summer, when the low pressure cell over mid-high latitude land areas was intensified due to the high-latitude warming. The opposite scenario is suggested for the Heinrich events. In addition, an intra-hemispheric joint forcing is evidenced for the Early Holocene-Preboreal summer monsoon maximum between 11,600–8,800cal. yBP, based on the synchrony of the events found both in the South China Sea and in the Arabian Sea. The unique early Holocene polar cooling event at about 8,200cal. yBP recorded in the Greenland ice core is found to coincide with a large-scale perturbation in the low latitude summer monsoon precipitation.

Keywords

Summer Monsoon Last Glacial Maximum Winter Monsoon East Asian Monsoon Eolian Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, S.K., Chasing the paleomonsoon over China: it’s magnetic record. GSA Today, 5:93–97, 1995.Google Scholar
  2. Bard, E., F. Rostek, and C. Sonzogni, Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry. Nature, 385:707–710, 1997.CrossRefGoogle Scholar
  3. Berger, A., and M.F. Loutre, Insolation values for the climate of the last 10 million of years. Quat. Sci. Rev., 10:297–317, 1991.CrossRefGoogle Scholar
  4. Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud, Variations in atmospheric methane concentration during the Holocene epoch. Nature, 374:46–49, 1995.CrossRefGoogle Scholar
  5. Bond, G., H. Heinrich, W. Broecker, L. Labeyrie, J. McManus, J. Andrews, S. Huon, R. Jantschik, S. Clasen, C. Simet, K. Tedesco, M. Klas, G. Bonani, and S. Ivy, Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360:245–249, 1992.CrossRefGoogle Scholar
  6. Bond, G., W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. de Menocal, P. Priore, H. Cullen, I. Hajdas, and G. Bonani, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278:1257–1266, 1997.CrossRefGoogle Scholar
  7. Cortijo, E., P. Yiou, L. Labeyrie, and M. Cremer, Sedimentary record of rapid climatic variability in the North Atlantic Ocean during the last glacial cycle. Paleoceanogr., 10:911–926, 1995.CrossRefGoogle Scholar
  8. Dansgaard, W., S.J. Johnson, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjoensdottir, J. Jouzel, and G. Bond, Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364:218–220, 1993.CrossRefGoogle Scholar
  9. Grootes, P.M., and M. Stuiver, Oxygen 18/16 variability in Greenland snow and ice with 103 to 105 year time resolution. J. Geophys. Res., 102, C12:26,455–26,470, 1997.CrossRefGoogle Scholar
  10. Grootes, P.M., M. Stuiver, J.W.C. White, S. Johnsen, and J. Jouzel, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366:552–554, 1993.CrossRefGoogle Scholar
  11. Hebbeln, D., and G. Wefer, Late Quaternary paleoceanography in the Fram Strait. Paleoceanogr., 12:65–78, 1997.CrossRefGoogle Scholar
  12. Japan Hydrographic Association, Marine Environmental Atlas: Northewestern Pacific II, Japan Oceanographic Data Center, Tokyo, 1978.Google Scholar
  13. Johnsen, S.J., W. Dansgaard, H.B. Clausen, and C.C. Langway, Oxygen isotope Profiles through the Antarctic and Greenland Ice Sheet, Nature, 235:429–434, 1972.CrossRefGoogle Scholar
  14. Jouzel, J. et al., The two step shape and timing of the last deglaciation in Antarctica. Clint. Dyn., 11:151–161, 1995.CrossRefGoogle Scholar
  15. Kudrass, H.R., H. Erlenkeuser, R. Vollbrecht, and W. Weiss, Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. Nature, 349:406–409, 1991.CrossRefGoogle Scholar
  16. Kukla, G., F. Heller, L.X.-M., X.-T. Chun, T.-S. Liu, and Z.-S. An, Pleistocene climates in China dated by magnetic susceptibility. Geology, 16:811–814, 1988.CrossRefGoogle Scholar
  17. Koopmann, B., Saharan dust deposition in the subtropical Atlantic during the last 25,000 years (in German). “Meteor” Forschungserg., C5:23–54, 1981.Google Scholar
  18. Liu, T., and Z. Ding, Stepwise coupling of monsoon circulation to global ice volume variations during the late Cenozoic. Global & Planet. Sci., 7:119–130, 1993.CrossRefGoogle Scholar
  19. Milliman, J.D., and J.P.M. Syvitski, Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100:524–544, 1992.CrossRefGoogle Scholar
  20. Parkin, D.W., and N.J. Shackleton, Trade Wind and temperature correlations down a deep-sea core off the Saharan Coast. Nature, 245(5426):455–457, 1973.CrossRefGoogle Scholar
  21. Porter, S.C., and Z. An, Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375:305–308, 1995.CrossRefGoogle Scholar
  22. Pye, K., and L. Zhou, Late Pleistocene and Holocene eolian dust deposition in north China and the northwest Pacific Ocean. Palaeo. Palaeo. Palaeo., 73:11–23, 1989.Google Scholar
  23. Reinsch, C.H., Smoothing by spline functions. Numer. Math., 10:177–183, 1967.CrossRefGoogle Scholar
  24. Sarnthein, M., E. Jansen, M. Weinelt, M. Arnold, J.C. Duplessy, H. Erlenkeuser, A. Flatoey, G. Johanessen, T. Johanessen, S. Jung, N. Koc, L. Labeyrie, M. Maslin, U. Pflaumann, and H. Schulz, Variations in Atlantic surface ocean paleoceanography, 50°–80°N: a time-slice record of the last 30,000 years. Paleo-ceanogr., 10:1063–1094, 1995.Google Scholar
  25. Sarnthein, M., U. Pflaumann, P.X. Wang, and H.K. Wong (Editors), Preliminary Report on SONNE-95 Cruise “Monitor Monsoon” to the South China Sea. Berichte-Reports, Geol.-Palaeont. Inst. Univ. Kiel, 48:1–225, 1994.Google Scholar
  26. Schulz, H., U. von Rad, and H. Erlenkeuser, Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature, 393:54–57, 1998.Google Scholar
  27. Shi, Y., Z. Kong, S. Wang, L. Tang, F. Wang, T. Yao, X. Zhao, P. Zhang, and S. Shi, Mid-Holocene climates and environments in China. Global & Planet. Change, 7:219–233, 1993.CrossRefGoogle Scholar
  28. Sirocko, F., M. Sarnthein, H. Erlenkeuser, H. Lange, M. Arnold, and J.C. Duplessy, Century-scale events in monsoonal climate over the past 24,000 years. Nature, 364:322–324, 1993.CrossRefGoogle Scholar
  29. Sirocko, F., D. Garbe-Schoenber, A. McIntyre, and B. Molfino, Teleconnection between the subtropical Monsoon and high-latitude climate during the last deglaciation. Science, 272:526–529, 1996.CrossRefGoogle Scholar
  30. Sowers, T., and M. Bender, Climate records covering the last deglaciation. Science, 269:210–214, 1995.CrossRefGoogle Scholar
  31. Stouffer, B., T. Blunier, A. Daellenbach, A. Indermuehle, J. Schwander, T.F. Stocker, J. Tschumi, J. Chappellaz, D. Raynaud, C.U. Hammer, and H.B. Clausen, Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period, Nature, 392:59–62, 1998.CrossRefGoogle Scholar
  32. Stein, R., Rapid grain-size analyses of clay and silt fraction by SediGraph 5100D: comparison with Coulter Counter and Atterberg methods. J. Sediment Petrol, 55:590–615, 1985.Google Scholar
  33. Stoner, J.S., J.E.T. Channell, and C. Hillaire-Marcel, The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: relationship to North Atlantic Heinrich layers. Paleoceanogr., 11:309–325, 1996.CrossRefGoogle Scholar
  34. Stuiver, M., and P.J. Reimer, Extended 14C Data Base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35:215–230, 1993.Google Scholar
  35. Tchernia, P., Descriptive Regional Oceanography. In: Pergamon Marine Series, 3, 253pp., 1980.Google Scholar
  36. Unsöld, G., Der Transport feinstkörnigen rolligen Sohlmaterials in gelichförmigen turbulenten Strömungen: eine Experimentelle Überpfüfung und Erweiterung der Shields Funktion. Reprots Sonderforschungsbereich 95, Universität Kiel, No. 70, 1–140, 1984.Google Scholar
  37. Wang, L., and T. Oba, Tele-connections between East Asian monsoon and the high-latitude climate: A comparison between the GISP2 ice core record and the high resolution marine records from the Japan and the South China Seas, The Quaternary Research, 37:211–219, 1998.CrossRefGoogle Scholar
  38. Wang, L., M. Sarnthein, and P.M. Grootes, Millennial reoccurrence of century-scale abrupt events of East Asian Monsoon: a possible heat conveyor for the global deglaciation, Paleoceanography, 1999b (In PreGoogle Scholar
  39. Wang, L., and P. Wang, Late Quaternary paleoceanography of the South China Sea: glacial/interglacial contrasts in an enclosed basin. Paleoceanogr., 5:77–90, 1990.CrossRefGoogle Scholar
  40. Wang, L., M. Sarnthein, H. Erlenkeuser, J. Grimait, P. Grootes, S. Heilig, E. Ivanova, M. Kienast, C. Pelejero, and U. Pflaumann, East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea, Marine Geology, 156:245–284, 1999a.Google Scholar
  41. Winkler, M.G., and P.K. Wang, The late Quaternary vegetation and climate of China. In: H.E. Wright et al. (Editors), Global Climates Since the Last Glacial Maximum, Univ. of Minnesota Press, Minneapolis-London, pp. 221–264, 1993.Google Scholar
  42. Winn, K., M. Sarnthein, and H. Erlenkeuser, δ18O stratigraphy and chronology of Kiel sediment cores from the East Atlantic. Berichte-Reports, Geol.-Palaeont. Inst. Univ. Kiel, 45:1–99, 1991.Google Scholar
  43. Xiao, J.L., Y. Inouchi, H. Kumai, Y. Kondo, T. Liu, and Z. An, Eolian Quartz flux to lake Biwa, Central Japan, over the past 145,000 years. Quat. Res., 48:48–57, 1997.CrossRefGoogle Scholar
  44. Xiäo, J., S.C. Porter, Z. An, H. Kumai, and S. Yoshikawa, Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130,000 yr. Quat. Res., 43:22–29, 1995.CrossRefGoogle Scholar
  45. Zhang, C., and P. Ma, Geographical Climatology. Meterology Press, Beijing, pp. 150–153, 1989 (in Chinese).Google Scholar
  46. Zhang, J., W. Huang, and M. Liu, Geochemistry of major Chinese river-estuary systems, In: D. Zhou, Y. Liang, and C. Zeng (Editors), Oceanology of China Seas, Vol. 1, Kluwer Academic Publishers, Dordrecht, pp. 179–188, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Luejiang Wang
    • 1
    • 2
  • Michael Sarnthein
    • 2
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.Institute of GeosciencesKiel UniversityKielGermany

Personalised recommendations