Skip to main content

Controls on the Carbon Isotopic Composition of Phytoplankton

Paleoceanographic Perspectives

  • Chapter
Reconstructing Ocean History

Abstract

Carbon isotopic compositions of marine organic matter can provide important environmental information. However, variability in δ13C can be caused by many factors including concentration of ambient CO2(aq) and microalgal physiology. This paper reviews the major factors affecting δ13C and shows that microalgal growth rate and cell geometry strongly influence carbon isotopic fractionation in marine microalgae and must be constrained to determine paleo-[CO2(aq)] from δ13C analyses. Cell geometry can be quantitatively constrained only when the source of the phytoplankton carbon analyzed is known and the source of phytoplankton carbon can be established by isotopic analyses of matrix organic matter in diatom frustules or of sedimentary alkenones. There is currently no way to determine the growth rate of ancient diatoms whereas growth rates of the alkenone-containing haptophytes appear to be correlated with dissolved phosphate. Consequently, εP determined from isotopic analyses of sedimentary alkenones and δ13C of planktonic foraminifera combined with Cd/Ca measurements of planktonic foraminifera, which is a proxy for surface water phosphate, provide the best quantitative approach for determining paleo-[CO2(aq)]. The uncertainty in this method is approximately 11% (95% confidence interval) which is sensitive enough to distinguish between most glacial/interglacial variations in [CO2(aq)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur, M.A., W.E. Dean, and G.E. Claypool, Anomalous 13C enrichment in modern marine organic carbon. Nature, 315, 216–218, 1985.

    Article  Google Scholar 

  • Benthien, A., N. Andersen, P.J. Mueller, R.R. Schneider, and G. Wefer, Alkenone delta C-13 derived PCO2 levels in surface waters of the South Atlantic: Holocene vs. Last Glacial Maximum. ASLO Aquatic Science Meeting, (Abstract), p. 22, 1999.

    Google Scholar 

  • Bidigare, R.R., A. Fluegge, K.H. Freeman, K.H. Hanson, J.M. Hayes, D. Hollander, J.P. Jasper, L.L. King, E.A. Laws, J. Milder, F.J. Millero, R. Pancost, B.N. Popp, P.A. Steinberg, and S.G. Wakeham, Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Global Biogeochem. Cycles, 11, 279–292, 1997.

    Article  Google Scholar 

  • Bidigare, R.R., A. Fluegge, K.H. Freeman, K.H. Hanson, J.M. Hayes, D. Hollander, J.P. Jasper, L.L. King, E.A. Laws, J. Milder, F.J. Millero, R. Pancost, B.N. Popp, P.A. Steinberg, and S.G. Wakeham, Correction to “Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae” by R.R. Bidigare et al. Global Biogeochem. Cycles, 13, 251–252, 1999a.

    Google Scholar 

  • Bidigare, R.R., K.L. Hanson, K. Buesseler, S.G. Wakeham, K.H. Freeman, R.D. Pancost, F.J. Millero, P. Steinberg, B.N. Popp, M. Latasa, M.R. Landry, and E.A. Laws, Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton: Toward a paleo-growth rate proxy, Paleo-ceanogr., 14, 589–595, 1999b.

    Google Scholar 

  • Boyle, E.A., On the marine geochemistry of cadmium, Nature, 203, 42–44, 1976.

    Article  Google Scholar 

  • Boyle, E.A., Cadmium, zinc, copper, and barium in foraminiferal tests, Earth Planet. Sci. Letters, 53, 11–35, 1981.

    Article  Google Scholar 

  • Boyle, E.A., Cadmium: Chemical tracer of deepwater paleoceanography, Paleoceanography, 3, 471–489, 1988.

    Article  Google Scholar 

  • Boyle, E.A., Quaternary deepwater paleoceanography, Science, 249, 863–870, 1990.

    Article  Google Scholar 

  • Boyle, E.A., Cadmium and δ13C paleochemical ocean distributions during stage 2 glacial maximum, Annu. Rev. Earth Planet. Sci., 20, 245–287, 1992.

    Article  Google Scholar 

  • Boyle, E.A., L. Labeyrie, and J.-C. Duplessy, Calcite foraminiferal data confirmed by cadmium in aragonite Hoeglundina: Application to the last glacial maximum in the northern Indian Ocean, Paleoceanography, 10, 881–900, 1995.

    Google Scholar 

  • Brassell, S.C., Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene, in Organic Geochemistry, edited by M.H. Engel, and S.A. Macko, pp. 699–738, Plenum, New York, 1993.

    Chapter  Google Scholar 

  • Bruland, K.W., and R.P. Franks, Cadmium in northeast Pacific waters, Limnol. Oceanogr., 23, 618–625, 1978.

    Article  Google Scholar 

  • Cifuentes, L.A., J.H. Sharp, and M.L. Fogel, Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol. Oceanogr, 33, 1102–1115, 1988.

    Article  Google Scholar 

  • de Baar, H.J.W., P.M. Saager, R.F. Nolting, and J. Vandermeer, Cadmium versus phosphate in the world ocean, Mar. Chem., 46, 261–281, 1994.

    Article  Google Scholar 

  • Dean, W.E., M.A. Arthur, and G.E. Claypool, Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Mar. Geol., 70, 119–157, 1986.

    Article  Google Scholar 

  • Deines, P., D. Langmuir, and R.S. Harmon, Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters, Geochim. Cosmochim. Acta, 38, 1147–1164, 1974.

    Article  Google Scholar 

  • Delaney, M.L., Uptake of cadmium shells by planktonic foraminifera. Chemical Geology, 78, 159–165, 1989.

    Article  Google Scholar 

  • Dickson, A.G., An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total CO2 from titration data, Deep-Sea Res., Part A, 28, 609–623, 1981.

    Article  Google Scholar 

  • Dickson, A.G., Standard potential of the reaction: AgCl(s) + 1.2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990a.

    Google Scholar 

  • Dickson, A.G., Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K, Deep-Sea Res., Part A, 37, 755–766, 1990b.

    Article  Google Scholar 

  • Donat, J.R., and K.W Bruland, Trace elements in the oceans, in Trace Elements in Natural Waters, edited by B. Salbu, and E. Steinnes, pp. 247–281, CRC Press, Boca Raton, Fla., 1995.

    Google Scholar 

  • Eppley, R.W., Temperature and phytoplankton growth in the sea, Fish Bull., 70, 1063–1085, 1972.

    Google Scholar 

  • Fischer, G., Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Mar. Chem., 35, 581–596, 1991.

    Article  Google Scholar 

  • Francois, R., M.A. Altabet, R. Goericke, D.C. McCorkle, C. Brunet, and A. Poisson, Changes in the δ18C of surface water particulate organic matter across the subtropical convergence in the S.W. Indian Ocean. Global Biogeochem. Cycles, 7, 627–644, 1993.

    Article  Google Scholar 

  • Freeman, K.H., and J.M. Hayes, Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles, 6, 185–198, 1992.

    Article  Google Scholar 

  • Freeman, K.H., and S.G. Wakeham, Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments, in Advances in Organic Geochemistry, 1991, Org. Geochem., vol. 19, edited by C. Eckardt et al., pp. 277–285, Elsevier, Oxford, England, 1992.

    Google Scholar 

  • Frew, R.D., and K.A. Hunter, Influence of southern ocean waters on the cadmium-phosphate properties of the global ocean, Nature, 360, 144–146, 1992.

    Article  Google Scholar 

  • Fry, B., and S.C. Wainright, Diatom sources of 13C-rich carbon in marine food webs. Mar. Ecol. Prog. Ser., 76, 149–157, 1991.

    Google Scholar 

  • Goericke, R., and B. Fry, Variations of marine plankton δ18C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochem. Cycles, 8, 85–90, 1994.

    Article  Google Scholar 

  • Goericke, R., J.P. Montoya, and B. Fry, Physiology of isotopic fractionation in algae and cyanobacteria. in Stable Isotopes in Ecology and Environmental Science, edited by K. Lajtha, and R.H. Michener, pp. 187–221, Blackwell Scientific Publications, 1994.

    Google Scholar 

  • Hallegraeff, G.M., Coccolithophorids (calcareous nanoplankton) from Australian waters, Bonanica Mar., 27, 229–247, 1984.

    Google Scholar 

  • Hayes, J.M., Factors controlling the 13C contents of sedimentary organic compounds: Principals and evidence, Mar. Geol., 113, 111–125,1993.

    Article  Google Scholar 

  • Hayes, J.M., K.H. Freeman, C.H. Hoham, and B.N. Popp, Compound-specific isotopic analyses, a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem., 16, 1115–1128, 1990.

    Article  Google Scholar 

  • Hayes, J.M., B.N. Popp, R. Takigiku, and M.W. Johnson, An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation, Geochim. Cosmochim. Acta, 53, 2961–2972, 1989.

    Article  Google Scholar 

  • Jasper, J.P., J.M. Hayes, A.C. Mix, and FG. Prahl, Photosynthetic fractionation of 13C and concentrations of CO2 in the central equatorial Pacific during the last 225,000 years, Paleoceanography, 9, 781–898, 1994.

    Article  Google Scholar 

  • Jickells, T.D., and J.D. Burton, Cobalt, copper, manganese and nickel in the sea, Mar. Chem., 23, 131–144, 1988.

    Article  Google Scholar 

  • Johnson, K.M., K.D. Wills, W.K. Butler, W.K. Johnson, and C.S. Wong, Coulometric total carbon dioxide analysis for marine studies: Maximizing the performance of an automated gas extraction system and coulometric detector, Mar. Chem., 44, 167–188, 1993.

    Article  Google Scholar 

  • Karl, D.M., and R. Lukas, The Hawaiian Ocean Time-series (HOT) Program: Background rationale and field implementation. Deep-Sea Res., 43, 129–156, 1996.

    Article  Google Scholar 

  • Kroopnick, P., The distribution of 13C in ICO2 in the world oceans, Deep-Sea Res., Part A, 32, 57–84, 1985.

    Article  Google Scholar 

  • Laws, E.A., Mathematical Methods for Oceangraphers. Wiley and Sons, New York, 343, p. 1997.

    Google Scholar 

  • Laws, E.A., Bidigare R.R., and B.N. Popp, Effect of growth rate and CO2 concentration on carbon fractionation by the marine diatom Phaeodactylum tricornutum, Limnol. Oceanogr., 42, 1552–1560, 1997.

    Article  Google Scholar 

  • Laws, E.A., B.N. Popp, R.R. Bidigare, M.C. Kennicutt, and S.A. Macko, Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2(aq)]: Theoretical considerations and experimental results. Geochim. Comochim. Acta, 59, 1131–1138, 1995.

    Article  Google Scholar 

  • Marlowe, I.T., S.C. Brassell, G. Eglinton, and J.C. Green, Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chem. Geol, 88, 349–375, 1990.

    Article  Google Scholar 

  • Martin, J.H., and R.M. Gordon, Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep-Sea Res., Part A, 35, 177–196, 1988.

    Article  Google Scholar 

  • Mashiotta, T.A., D.W. Lea, and H.J. Spero, Experimental determination of cadmium uptake in the shells of the planktonic foraminifera Orbulina universa and Globigernia bulloides: Implications for surface water paleoceanography. Geochimica. Cosmochim. Acta, 61, 4053–4065, 1993.

    Article  Google Scholar 

  • Merritt, D.A., and J.M. Hayes, Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry, Anal. Chem., 66, 2336–2347, 1994.

    Article  Google Scholar 

  • Merritt, D.A., K.H. Freeman, M.P. Ricci, S.A. Studley, and J.M. Hayes, Performance and optimization of a combustion interface for isotope-ratio-monitoring gas chromatography/mass spectrometry, Anal. Chem., 67, 2461–2473, 1995.

    Google Scholar 

  • Millero, F.J., The thermodynamics of the carbonic acid system in seawater, Geochim. Cosmochim. Acta, 43, 1651–1661, 1979.

    Article  Google Scholar 

  • Millero, F.J., The thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59, 661–677, 1995.

    Google Scholar 

  • Montagnes, D.J.S., J.A. Berges, P.J. Harrison, and F.R.J. Taylor, Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39, 1044–1060, 1994.

    Article  Google Scholar 

  • Mook, W.G., J.C. Bommerson, and W.H. Staberman, Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169–176, 1974.

    Article  Google Scholar 

  • Nakatsuka, T., N. Handa, E. Wada, and C.S. Wong, The dynamic changes of stable isotopic ratios of carbon and nitrogen in suspended and sedimented particulate organic matter during a phytoplankton bloom. Jour. Mar. Res., 50, 267–296, 1992.

    Article  Google Scholar 

  • Oppo, D.W., and Y. Rosenthal, Cd/Ca changes in a deep Cape Basin core over the past 730,000 years: Response of circumpolar deepwater variability to northern hemisphere ice sheet melting? Paleoceanography, 5, 43–54, 1994.

    Article  Google Scholar 

  • Popp, B.N., E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. Wakeham, Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta, 62, 69–77, 1998.

    Article  Google Scholar 

  • Popp, B.N., R. Takigiku, J.M. Hayes, J.W. Louda, and E.W. Baker, The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. Am. J. Science, 289, 436–454, 1989.

    Article  Google Scholar 

  • Raven, J.A., and A.M. Johnston, Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol. Oceaogr., 36, 1701–1714, 1991.

    Article  Google Scholar 

  • Rau, G.H., Variations in sedimentary organic δ13C as a proxy for past changes in ocean and atmospheric CO2. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change, edited by R. Zahn, T.F. Pederson, M.A. Kaminski, and L. Labeyrie, NATO ASI Ser., 17, 307–321, 1994.

    Google Scholar 

  • Rau, G.H., U. Riebesell, and D. Wolf-Gladrow, A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar. Ecol. Prog. Ser., 133, 275–285, 1996.

    Article  Google Scholar 

  • Rau, G.H., U. Riebesell, and D. Wolf-Gladrow, CO2aq-dependent photosynthetic 13C fractionation in the ocean: A model versus measurements, Global Biogeochem. Cycles, 11, 267–278, 1997.

    Article  Google Scholar 

  • Rau, G.H., T. Takahashi, and D.J. Des Maris, Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature, 341, 516–518, 1989.

    Article  Google Scholar 

  • Rau, G.H., T. Takahashi, D.J. Des Maris, DJ. Repeta, and J.H. Martin, The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim. Cosmochim. Acta, 56, 1413–1419, 1992.

    Article  Google Scholar 

  • Rintoul, S.R., J.R. Donguy, and D.H. Roemmich, Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica, Deep-Sea Research I, 44, 1185–1202, 1997.

    Article  Google Scholar 

  • Rio, D., I. Raffi, and G. Villa, Pliocene-Pleistocene calcareous nannofossil distribution patters in the western Mediterranean, in Kastens, K.A., J. Mascle, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Leg 107; College Station, Texas, Ocean Drilling Program, p. 1049–1058, 1990.

    Google Scholar 

  • Roy, R.N., L.N. Roy, K.M. Vogel, C.P. Moore, T. Pearson, C.E. Good, FJ. Millero, and D.M. Cambell, Determination of the ionization constants of carbonic acid in seawater, Mar. Chem., 44, 249–268, 1993.

    Article  Google Scholar 

  • Sackett, W.M., B.J. Eadie, and M.E. Exner, Stable isotope composition of organic carbon in recent Antarctic sediments. in: Advances in Organic Geochemistry 1973, 661–671, 1974.

    Google Scholar 

  • Sackett, W.M., W.R. Eckelmann, M.L. Bender, and A.W.H. BÇ, Temperature dependence of carbon isotope composition in marine plankton and sediments, Science, 148, 235–237, 1965.

    Article  Google Scholar 

  • Saager, P.M., and H.J.W. de Baar, Limitations to the quantitative application of Cd as a paleoceanographic tracer based on results of multi-box model (MENU) and statistical considerations, Global. Planet. Change, 8, 69–92, 1993.

    Article  Google Scholar 

  • Sharkey, T.D., and J.A. Berry, Carbon isotope fractionation in algae as influenced by an inducible CO2 concentrating mechanism, in Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, edited by W.J. Lucas, and J.A. Berry, American Society of Plant Physiology, p. 389–401, 1985.

    Google Scholar 

  • Shemesh, A., S.A. Macko, C.D. Charles, and G.H. Rau, Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science, 262, 407–410, 1993.

    Article  Google Scholar 

  • Sikes, E.L., J.K. Volkman, L.G. Robertson, and J.J. Pichon, Alkenones and alkenes in surface waters and sediments of the Southern Ocean: Implications for paleotemperature estimation in polar regions. Geochim. Cosmochim. Acta, 61, 1495–1505, 1997.

    Article  Google Scholar 

  • Singer, A.J., and A. Shemesh, Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleoceanography, 10, 171–177, 1995.

    Article  Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons, A practical handbook of seawater analysis, Fish. Res. Board Can., 167, 311, 1972.

    Google Scholar 

  • Thierstein, H.R., K.R. Geitzenauer, and B. Molfino, Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology, 5, 400–404, 1

    Article  Google Scholar 

  • Thompson, P.A., and S.E. Calvert, Carbon isotopie fractionation by a marine diatom: The influence of irradiance, daylength, pH, and nitrogen source. Limnol. Oceanogr., 39, 1835–1844, 1994.

    Article  Google Scholar 

  • Verity, P.G., C.Y. Robertson, C.R. Tronzo, M.G. Andrews, J.R. Nelson, and M. Sieracki, Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr, 37, 1434–1446, 1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popp, B.N., Hanson, K.L., Dore, J.E., Bidigare, R.R., Laws, E.A., Wakeham, S.G. (1999). Controls on the Carbon Isotopic Composition of Phytoplankton. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics