Advertisement

Non-Invasive Sediment Monitoring Methods

Current and Future Tools for High-Resolution Climate Studies
  • Joseph D. Ortiz
  • Frank R. Rack

Abstract

Over the past three decades, great strides have been made toward real-time characterization of deep-sea sediments. Significant improvements in core quality and recovery related to the development of the DSDP hydraulic piston corer (HPC) and the DSDP/ODP advanced piston corer (APC) paved the way for the evolution of non- invasive measurement systems. Non-invasive techniques provide cost-effective use of otherwise expensive sea time, and leave sediments undisturbed for additional post-cruise study. These methods revolutionize our ability to characterize sediment properties. Suddenly, it has become possible to correlate at high resolution between geographically separated sites, and develop detailed proxies of physical, geochemical, and environmental processes. While previous generations of scientists were forced to extrapolate using low resolution data of variable quality, today we have a growing abundance of high-quality, closely-spaced, co-located measurements that can be applied in many ways. Data types now routinely available include: gamma-ray attenuation density, acoustic properties, magnetic susceptibility, natural gamma emissions, diffuse spectral reflectance and sediment resistivity. Non-invasive measurements allow shipboard scientists to document full recovery of sediment sequences recovered by drillship. This enables correlation among piston cores, mapping of downhole variability, development of detailed age models, and characterization of sediment mineralogy as well as physical and optical properties at centimeter to decimeter scale. Composite stratigraphic sections, created by matching variations in sediment properties from multiple holes at a given site, can be combined with age information to transform depth profiles into time series useful for spectral analyses. These composite sections are also useful for developing synthetic seismograms to integrate coring results with regionally extensive geophysical data. This suite of accomplishments make these methodologies among the tools of choice for characterizing sub- Milankovitch and Millennial-scale climatic variability.

Future objectives related to the evolution of these methods should focus on improved calibration and intercalibration protocols for existing systems and the deployment of innovative new measurement techniques. Many of the new techniques on the horizon will improve our ability to image sediment in two or three dimensions. Important advancements will include the deployment of a variety of digital cameras for archiving visual information, confocal laser macroscopes for studies of sediment microfabric, magnetic resonance imaging (MRI) techniques for estimating porosity in volume or cross sectional view, and a new generation of X-ray methods (Scanning XRF and CT-Scan) for elemental estimation and characterization of density variations related to ice-rafted debris (IRD), bioturbation and compositional changes.

Keywords

Magnetic Susceptibility Ocean Drilling Program Natural Gamma Split Core Shipboard Scientific Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J.T., and Jennings, A.E., 1987. Influence of sediment source and type on the magnetic susceptibility of fjord and shelf deposits, Baffin Island and Baffin Bay, N. W.T. Can. J. Earth Sci., 24:1386–1401.CrossRefGoogle Scholar
  2. Andrews, J.T., MacLean, B., Kerwin, M., Manley, W., Jennings, A.E., and Hall, F., 1995. Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada, NWT: 14C AMS dates, seismic stratigraphy, and magnetic susceptibility logs. Quat. Sci. Rev., 14:983–1004.CrossRefGoogle Scholar
  3. Atkins, J.F., Boyle, E.A., Keigwin, L., and Cortijo, E., 1997. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature, 390:154–156.CrossRefGoogle Scholar
  4. Attard, J.J., McDonald, P.J., Roberts S.P., and Taylor, T., 1994. Solid state NMR imaging of irreducible water in reservoir cores for spatially resolved pore surface relaxation estimation, Mag. Res. Imag., 12:355–359.CrossRefGoogle Scholar
  5. Balcom, B.J., MacGregor, R.P., Beyea, S.D., Green, D.P., Armstrong, R.L., and Bremner, T.W., 1996. Single-point ramped imaging with T1 enhancement (SPRITE), J. Mag. Reson., A123:131–134.CrossRefGoogle Scholar
  6. Balsam, W.L., and Deaton, B.C., 1991. Sediment dispersal in the Atlantic Ocean: Evaluation by visible light spectra, Reviews in Aquatic Sciences, 4:411–447.Google Scholar
  7. Balsam, W.L., Damuth, J.E., and Schneider, R.R., 1997. Comparison of shipboard vs. shore-based spectral data from Amazon fan cores: Implications for interpreting sediment composition, In Flood, R.D., Piper, D.J.W., Klaus, A., and Peterson, L.C., (Eds.), Proc. ODP, Sci. Repts, 155: College Station, TX (Ocean Drilling Program), 1–23.Google Scholar
  8. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Qidelleur, X., Shackleton, N.J., and Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126:91–108.CrossRefGoogle Scholar
  9. Bates, C.C., Gaskell, T.F., and Rice, R.B., 1982. Geophysics in the Affairs of Man: A Personalized History of Exploration Geophysics and Its Allied Sciences of Seismology and Oceanography. New York (Perga-mon Press), 492 pp.Google Scholar
  10. Behl, R.J., Morris, R.M., and Kennett, J.P., 1997. (ABSTRACT) Late Quaternary Paleoxygenation of the Central California Margin, ODP Site 1017, as Shown by CT-Scans, EOS Transaction AGU, 78, 1997 Fall Meeting Supplement, F369.Google Scholar
  11. Bennett, R.H., Bryant, W.R., and Hulbert, M.H., 1990. Microstructure of Fine-Grained Sediments: From Mud to Shale. New York (Springer-Verlag).Google Scholar
  12. Bennett, R.H., Bryant, W.R., and Keller, G.H., 1981. Clay fabric of selected submarine sediments: Fundamental properties and models. J. Sedimentary Petrology, 51:217–232.Google Scholar
  13. Bernhard, R.K., and Chasek, M., 1955. Soil density determination by direct transmission gamma-rays, American Society for Testing Materials, Proceedings, 55:1199–1223.Google Scholar
  14. Bloemendal, J., 1983. Paleoenvironmental implications of the magnetic characteristics of sediments from Deep-Sea Drilling Project Site 514, Southeast Argentine Basin, In Ludwig, W. J., Krasheninnikov, V.A., et al., Initial Reports of the Deep-Sea Drilling Project, 71, Washington (U.S. Government Printing Office), 1097–1108.Google Scholar
  15. Bloemendal, J., Lamb, B., and King, J., 1988. Paleoenvironmental implications of rock-magnetic properties of late Quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography, 3:61–87.CrossRefGoogle Scholar
  16. Bloemendal, J., and deMenocal, P., 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature, 342:897–900.CrossRefGoogle Scholar
  17. Bloemendal, J., King, J.W., Hall, F.R., and Doh, S.-J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res., 97:4361–4375.CrossRefGoogle Scholar
  18. Bloemendal, J., King, J.W., Hunt, A., deMenocal, P.B., and Hayashida, A., 1993. Origin of the sedimentary magnetic record at Ocean Drilling Program sites on the Owen Ridge, Western Arabian Sea. J. Geophys. Res., 98:4199–4219.CrossRefGoogle Scholar
  19. Bloomer, S.F., Mayer, L.A., and Moore, T.C., Jr., 1995. Seismic stratigraphy of the Eastern Equatorial Pacific Ocean: Paleoceanographic Implications. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 537–553.Google Scholar
  20. Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365:143–147.CrossRefGoogle Scholar
  21. Bond, G., Broecker, W., Lotti, R., and McManus, J., 1992. Abrupt color changes in isotope stage 5 in North Atlantic deep sea cores: Implications for rapid change of climate-driven events. In Kukla, G.J., and Went, E. (Eds.), Start of a Glacial. NATO ASI Series, 13:185–205, Springer-Verlag, Berlin.Google Scholar
  22. Bond, G.C., and Lotti, R., 1995. Iceberg discharges into the North Atlantic on millenial time scales during the last glaciation. Science, 267:1005–1010.CrossRefGoogle Scholar
  23. Boyce, R.E., 1968. Electrical resistivity of modern marine sediments from the Bering Sea., J. Geophys. Res., 73:4759–4766.CrossRefGoogle Scholar
  24. Boyce, R.E., 1973. Appendix I., Physical Properties Methods, In Edgar, N.T., Saunders, J.B. et al., Initial Reports of the Deep Sea Drilling Project, Volume 15: Washington (U.S. Government Printing Office), 1115–1128.Google Scholar
  25. Boyce, R.E., 1976. Appendix I: definitions and laboratory techniques of compressional sound velocity parameters and we-water content, wet-bulk density, and porosity parameters by gravimetric and gamma-ray attenuation techniques, In Schlanger, S. O., Jackson, E.D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 33: Washington (U.S. Government Printing Office), 931–958.Google Scholar
  26. Boyle, E.A., 1997. Characteristics of the deep ocean carbon system during the past 150,000 years: SCO2 distributions, deep water flow patterns, and abrupt climate change, Proc. Nat. Acad. Sci, U.S.A., 94:8300–8307.CrossRefGoogle Scholar
  27. Breitzke, M., and Speiß, V., 1993. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments, Marine Geophysical Researches, 15:297–321.CrossRefGoogle Scholar
  28. Breitzke, M., Grobe, H., Kuhn, G., and Muller, P., 1996. Full waveform ultrasonic transmission seismograms: A fast new method for the determination of physical and sedimentological parameters of marine sediment cores, JGR, 101:22123–22141.CrossRefGoogle Scholar
  29. Brier C., Bennin, R., and Rona, P.A., 1969. Preliminary evaluation of a core scintillation counter for bulk density measurement in marine sediment cores, Journal of Sedimentary Petrology, 39:1509–1519.Google Scholar
  30. Bryant, W.R., and Bennett, R.H., 1988. Origin, physical, and mineralogical nature of red clays: The Pacific Ocean Basin as a model. Geo-Marine Letters (special issue), 8:189–249.Google Scholar
  31. Bryant, W.R., Bennett, R.H., and Katherman, C.E., 1981. Shear strength, consolidation, porosity, and permeability of oceanic sediments. In Emiliani, C. (Ed.), The Oceanic Lithosphere; The Sea, v. 7, New York (John Wiley and Sons), 1555–1661.Google Scholar
  32. Bryant, W.R., Deflache, A.P., and Trabant, P.K., 1974. Consolidation of marine clays and carbonates. In Inder-bitzen, A.L., Deep-Sea Sediments: Physical and Mechanical Properties. New York (Plenum Press), 209–244.Google Scholar
  33. Buckley, D.E., MacKinnon, W.G., Cranston, R.E., and Christian, H.A., 1994. Problems with piston core sampling: Mechanical and geochemical diagnosis. Marine Geol., 117:95–106.CrossRefGoogle Scholar
  34. Busch, W.H., and Keller, G.H., 1982. Consolidation characteristics of sediments from the Peru-Chile continental margin and implications for past sediment instability. Marine Geology, 45:17–39.CrossRefGoogle Scholar
  35. Caldwell, J.M., 1960. Development and tests of a radioactive sediment density probe, Beach Erosion Board, Corps of Engineers, Tech. Memorandum, 121, 29 pp. and 22 pp., Appendices.Google Scholar
  36. Channell, J.E.T., Hodell, D.A., McManus, J., and Lehman, B., 1998. Orbital modulation of the Earth’s magnetic field intensity. Nature, 394:464–468.CrossRefGoogle Scholar
  37. Chapman, M.R., and Shackleton, N.J., 1998. What level of resolution is attainable in a deep-sea core? Results of a spectrophotometer study, Paleoceanography, 13:311–315.CrossRefGoogle Scholar
  38. Chi, Jian, and Mienert, J., 1996. Linking physical property records of Quaternary sediments to Heinrich events, Marine Geology, 131:57–73.CrossRefGoogle Scholar
  39. Cortijo, E., Yiou, P., Labeyrie, L., and Cremer, M., 1995. Sedimentary record of rapid climate variability in the North Atlantic Ocean during the last glacial cycle. Paleoceanogr., 10(5):911–926.CrossRefGoogle Scholar
  40. Courtney, R.C., and Mayer, L.A., 1993. Calculating acoustic parameters by a filter correlation method. J. Acoust. Soc. Am., 93:1145–1154.CrossRefGoogle Scholar
  41. Davie, J.R., Fenske, C.W., and Serocki, S.T., 1978. Geotechnical properties of deep continental margin soils. Marine Geotechnol., 3:85–119.CrossRefGoogle Scholar
  42. Davies, S., Hardwick, A., Roberts, D., Spowage, K., and Packer, K.J., 1994. Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging, Mag. Res. Imag., 12:349–353.CrossRefGoogle Scholar
  43. Deaton, B.C., and Balsam, W.L., 1991. Visible spectroscopy: A rapid method for determining hematite and goethite concentrations in geological material, J. Sediment. Petrol., 61:628–632.Google Scholar
  44. Deep Sea Drilling Project, 1984. Design and operation of an advanced hydraulic piston corer. IPOD/DSDP Development Engineering Technical Report No. 21, 269 pp.Google Scholar
  45. Demars, K.R., and Nacci, V.A., 1978. Significance of Deep Sea Drilling Project sediment physical property data. Marine Geotechnology, 3:151–170.CrossRefGoogle Scholar
  46. DeMenocal, P.B., Bristow, J.F., and Stein, R., 1992. Paleoclimatic applications of downhole logs: Pliocene-Pleistocene results from Hole 798B, Sea of Japan. In Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., and Barren, J. (Eds.), Proc. ODP, Sci. Results, 127/128, Pt. 1: College Station, TX (Ocean Drilling Program), 393–407.Google Scholar
  47. Dettinger, M.D., Ghil, M., Strong, C.M., Weibel, W., and Yiou, P., 1995. Software expedites singular-spectrum analysis of noisy time series, Eos, Trans. American Geophysical Union, v. 76(2), p. 12, 14, 21.Google Scholar
  48. Ding, Z., Rutter, N.W., and Liu, T.S., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 13:39–70.CrossRefGoogle Scholar
  49. Dixon, A.E., Damaskinos, S., Ribes, A., and Beesley, K.M., 1995. A new confocal scanning beam laser MACROscope using a telecentric, f-theta laser scan lens. J. Microscopy, 178:261–266.CrossRefGoogle Scholar
  50. Doh, S.-J., King, J.W., and Leinen, M., 1988. A rock magnetic study of giant piston core LL44-GPC3 from the central North Pacific and its paleoceanographic implications. Paleoceanogr., 3(1):89–111.CrossRefGoogle Scholar
  51. Dowdeswell, J.A., Maslin, M.A., Andrews, J.T., and McCave, I.N., 1995. Iceberg production, debris rafting, and the extent and thickness of Heinrich layers (H-1, H-2) in North Atlantic sediments. Geology, 23:301–304.CrossRefGoogle Scholar
  52. Driscoll, N.W., and Haug, G.H., 1998. A short circuit in thermohaline circulation: A cause for Northern Hemisphere glaciation? Science, 282:436–446.CrossRefGoogle Scholar
  53. Einsele, G., and Kelts, K., 1982. Pliocene and Quaternary mud turbidites in the Gulf of California: Sedimentology, mass physical properties, and significance. In Curray, J.R., Moore, D.G., et al., Init. Repts, DSDP, 64: Washington (U.S. Govt. Printing Office), 511–542.Google Scholar
  54. Evans, H.B., 1965. GRAPE—A device for continuous determination of material density and porosity. Proceedings of 6th Annual SPWLA Logging Symposium. 2. Dallas, TX. pp. B1–B25.Google Scholar
  55. Evans, H.B., and Lucia, J.A., 1970. Natural Gamma radiation scanner, In Peterson, M. N. A., Degar, N.T. et al., Init Repts. DSDP, 2: Washington (US Govt. Printing Office), 458–460.Google Scholar
  56. Gerland, S., and Villinger, H., 1995. Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements, Geo-Marine Letters, 15:111–118.CrossRefGoogle Scholar
  57. Goldberg, D., 1997. The role of downhole measurements in marine geology and geophysics. Rev. Geophys., 35:315–342.CrossRefGoogle Scholar
  58. Goldberg, D., Wilkens, R.H., and Moos, D., 1987. Seismic modeling of diagenetic effects in Cenozoic marine sediments at Deep Sea Drilling Project Sites 612 and 613. In Poag, C.W., Watts, A.B., et al., Init. Repts. DSDP, 95:Washington (U.S. Govt. Printing Office), 589–599.Google Scholar
  59. Gorsline, D.S., 1980. Deep-water sedimentologic conditions and models. Mar. Geol., 38:1–21.CrossRefGoogle Scholar
  60. Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., and Huon, S., 1993. Patterns of ice-rafted detritus in the Glacial North Atlantic (40°-55°N), Paleoceanography, 8:175–192.CrossRefGoogle Scholar
  61. Gunn, D.E., and Best, A.I., 1998. A new automated nondestructive system for high resolution multi-sensor core logging of open sediment cores, Geo-Marine Letter, 18:70–77.CrossRefGoogle Scholar
  62. Hagelberg, T.K., Bond, G., and de Menocal, P., 1994. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene, Paleoceanography, 9:545–558.CrossRefGoogle Scholar
  63. Hagelberg, T.K., Pisias, N.G., Shackleton, N.J., Mix, A.C., and Harris, S., 1995. Refinement of a high-resolution, continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg 138. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 31–46.Google Scholar
  64. Hagelberg, T.K., Shackleton, N.J., Pisias, N., and Shipboard Scientific Party, 1992. Development of composite depth sections for Sites 844 through 854. In Mayer, L., Pisias, N, Janecek, T., et al., Proc. ODP, Init. Repts., 138: College Station, TX (Ocean Drilling Program), 79–85.Google Scholar
  65. Hall, F.R., and Reed, S.J., 1996. Rock (mineral)-magnetic properties of post-glacial (16-0.5 ka) sediments from the Emerald Basin (Scotian Shelf), Canada. In Andrews, J.T., Austin, W.E.N., Bergsten, H., and Jennings, A.E., Late Quaternary Paleoceanography of the North Atlantic Margins, London, Geol. Soc. Spec. Publ., 111:103–115.Google Scholar
  66. Hamilton, E.L., 1964. Consolidation characteristics and related properties of sediments from experimental Mohole (Guadalupe Site). J. Geophys. Res., 69:4257–4269.CrossRefGoogle Scholar
  67. Hamilton, E.L., 1976. Variations of density and porosity with depth in deep-sea sediments. J. Sediment. Petrol., 46:280–300.Google Scholar
  68. Hamilton, E.L., 1979. Sound velocity gradients in marine sediments. J. Acoustic Society of America, 65:909–922.CrossRefGoogle Scholar
  69. Hamilton, E.L., 1980. Geoacoustic modeling of the sea floor. J. Acoustic Society of America, 68:1313–1340.CrossRefGoogle Scholar
  70. Hamilton, E.L., and Bachman, R.T., 1982. Sound velocity and related properties of marine sediments. J. Acoustic Society of America, 72:1890–1903.Google Scholar
  71. Harris S.E., and Mix, A.C., 1999. Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments, Quaternary Research, 51:14–26.CrossRefGoogle Scholar
  72. Harris, S.E., Mix, A.C., and King, T., 1997. Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports pliocene-pleistocene deep-water linkage between hemispheres, In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J., (Eds.) Proc. ODP, Sci. Repts, 154: College Station, TX (Ocean Drilling Program), 331–348.Google Scholar
  73. Haug, G.H., Maslin, M.A., Sarnthein, M., Stax, R., and Tiedemann, R., 1995. Evolution of Northwest Pacific sedimentation patterns since 6 Ma (Site 882). In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 293–314.Google Scholar
  74. Hay, W.W., 1988. Paleoceanography: A review for the GSA Centennial. Geological Society of America Bulletin, 100:1934–1956.CrossRefGoogle Scholar
  75. Heller, F., and Evans, M.E., 1995. Loess magnetism. Reviews of Geophysics, 33:211–240.CrossRefGoogle Scholar
  76. Heller, F., and Liu, T.S., 1986. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophys. Res. Letts., 13:1169–1172.CrossRefGoogle Scholar
  77. Herbert, T.D., and Mayer, L.D., 1991. Long climatic time series from sediment physical properties measurements. J. Sediment. Petrol., 61:1089–1108.Google Scholar
  78. Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G., 1994. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ∼200 ka. Can. J. Earth Sci., 31:63–89.CrossRefGoogle Scholar
  79. Hoppie B.W., Blum, P., and the Shipboard Scientific Party, 1994. Natural gamma-ray measurements of ODP cores: introduction to procedures with examples from Leg 150, In Mountain, G.S., Miller, K.G., Blum, P., et al., Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program), 51–59.Google Scholar
  80. Howard, J.J., and Kenyon, W.E., 1992. Determination of pore size distribution in sedimentary rocks by proton nuclear magnetic resonance, Mar. Petrol. Geol., 9:139–145.CrossRefGoogle Scholar
  81. Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S., 1996. Rapid climatic changes in the tropical Atlantic region during the last deglaciation. Nature, 380:51–54.CrossRefGoogle Scholar
  82. Ingelman, K.R., and Hamilton, E.L., 1963. Bulk densities of mineral grains from Mohole samples (Guadalupe Site). J. Sediment. Petrol., 33:474–478.Google Scholar
  83. Jansen, J.H.F., Van der Gaast, S.J., Koster, B., and Vaars, A.J., 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Marine Geology, 151:143–153.CrossRefGoogle Scholar
  84. Kampf, N., and Schwertmann, U., 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils, Geoderma, 29:27–39.CrossRefGoogle Scholar
  85. Keller, G.H, 1964. Deep-sea Nuclear sediment density probe, Deep-Sea Research, 12:373–376.Google Scholar
  86. Keller, G.H., Lambert, D.N., and Bennett, R.H., 1979. Geotechnical properties of continental slope deposits— Cape Hatteras to Hydrographic Canyon. In Doyle, L.J., and Pilkey, O.H., (Eds.), Geology of Continental Slopes, SEPM Special Publ. No., 27:131–151.Google Scholar
  87. Kelts, K., and Niemitz, J., 1992. Preliminary sedimentology of late Quaternary diatomaceous muds from Deep Sea Drilling Project Site 480, Guaymas Basin slope, Gulf of California. In Curray, J.R., Moore, D.G., et al., Init. Repts, DSDP, 64: Washington (U.S. Govt. Printing Office), 1191–1210.Google Scholar
  88. King, J.W., and Channeil, J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy. U.S. National Report, International Union on Geodesy and Geopysics, 1987–1990. Rev. Geophysics, 29:358–370.Google Scholar
  89. Kukla, G., An, Z.S., Melice, J.L., Gavin, J., and Xia, J.L., 1990. Magnetic susceptibility record of Chinese loess. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81:263–288.CrossRefGoogle Scholar
  90. Lavoie, D.L., and Bryant, W.R., 1993. Permeability characteristics of continental slope and deep-water carbonates from a microfabric perspective. In Rezak, R., and Lavoie, D.L. (Eds.), Carbonate Microfabrics. New York (Springer-verlag), 117–128.Google Scholar
  91. Lyle, M., Mayer, L., Pisias, N., Hagelburg, T., Dadey, K., Bloomer, S., and the Shipboard Scientific Party of Leg 138. 1992. Downhole logging as a paleoceanographic tool on Ocean Drilling Program Leg 138: Interface between high-resolution stratigraphy and regional synthesis. Paleoceanography, 7:691–700.CrossRefGoogle Scholar
  92. MacKillop, A.K., Moran, K., Jarrett, K., Farrell., J., and Murray, D., 1995. Consolidation properties of equatorial Pacific Ocean sediments and their relationship to stress history and offsets in the Leg 138 composite depth sections. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 357–369.Google Scholar
  93. Manley, W.F., MacLean, B., Kerwin, M.W., and Andrews, J.T., 1993. Magnetic susceptibility as a Quaternary correlation tool: examples from Hudson Strait sediment cores, eastern Canadian Arctic. In Current Research, Part D, Geol. Surv. Canada, Paper 93–1D:137-145.Google Scholar
  94. Mansfield, P., and Issa, B., 1994. Studies of fluid transport in porous rocks by echo-planar MRI, Mag. Res. Imag., 12:275–278.CrossRefGoogle Scholar
  95. Mansfield, P., and B. Issa, 1996. Fluid transport in porous rocks, I. EPI studies and a stochastic model of flow, J. Mag. Reson., A122:137–148.Google Scholar
  96. Marine Geotechnical Consortium, 1986. Geotechnical properties of Northwest Pacific pelagic clays: Deep Sea Drilling Project Leg 86, Hole 576A. In Heath, GR., Burckle, L.H., et al., Init. Repts., DSDP, 86: Washington (U.S. Govt. Drilling Project), 723–758.Google Scholar
  97. Maslin, M.A., Haug, G.H., Sarnthein, M., Tiedemann, R., Erlenkeuser, H., and Stax, R., 1995. Northwest Pacific Site 882: The initiation of Northern Hemisphere glaciation. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 315–329.Google Scholar
  98. Mayer, L.A., 1979a. Deep-sea carbonates: Acoustic, physical, and stratigraphic properties. J. Sediment. Petrol., 49:819–836.Google Scholar
  99. Mayer, L.A., 1979b. The origin of fine scale acoustic stratigraphy in deep-sea carbonates. J. Geophys. Res., 84:6177–6184.CrossRefGoogle Scholar
  100. Mayer, L.A., 1980. Deep-sea carbonates: Physical property relationships and the origin of high-frequency acoustic reflectors. Marine Geol., 38:165–183.CrossRefGoogle Scholar
  101. Mayer, L.A., 1982. Physical properties of sediment recovered by Deep Sea Drilling Project Leg 68 with the Hydraulic Piston Corer. In Prell, W.L., and Gardner, J.V., et al., Init. Repts. DSDP, 68: Washington (U.S. Govt. Printing Office), 365–382.Google Scholar
  102. Mayer, L.A., 1991. Extraction of high-resolution carbonate data for paleoclimatic reconstruction. Nature, 352:148–150.CrossRefGoogle Scholar
  103. Mayer, L.A., Gobrecht, C., and Pisias, N.G., 1996. Three-dimensional visualization of orbital forcing and climate response: Interactively exploring the pacemaker of the ice ages.Google Scholar
  104. Mayer, L.A., Jansen, E., Backman, J., and Takayama, T., 1993. Climatic cyclicity at Site 806: The GRAPE record. In Berger, W.H., Kroenke, L.W., and Mayer, L.A. (Eds.), Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 623–639.Google Scholar
  105. Mayer, L.A., Shipley, T.H., and Winterer, E.L., 1986. Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science, 233:761–764.CrossRefGoogle Scholar
  106. Mayer, L.A., Shipley, T.H., Theyer, F., Wilkens, R.H., and Winterer, E.L., 1985. Seismic modeling and paleoceanography at Deep Sea Drilling Project Site 574. In Mayer, L.A., Theyer, F. et al., Init. Repts. DSDP, 85:Washington (U.S. Govt. Printing Office), 947–970.Google Scholar
  107. McCave, I.N., Manighetti, B., and Robinson, S.G., 1995. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and paleoceanography. Paleoceanogr., 10(3):593–610.CrossRefGoogle Scholar
  108. McCoy, F.W., 1985. Mid-core flow-in: Implications for stretched stratigraphic sections in piston cores. J. Sediment. Petrol., 55:608–610.Google Scholar
  109. McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S., 1994. High-resolution climate records from the North Atlantic during the last interglacial, Nature, 371:326–329.CrossRefGoogle Scholar
  110. Meinert, J., and Bloemendal, J., 1989. A comparison of acoustic and rock-magnetic properties of equatorial Atlantic deep-sea sediments: Paleoceanographic implications. Earth Planet. Sci. Letts., 94:291–300.CrossRefGoogle Scholar
  111. Meynadier, L., Valet, J.-P., and Shackleton, N.J., 1995. Relative geomagnetic intensity during the last 4 M.Y. from the Equatorial Pacific. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 779–795.Google Scholar
  112. Mix, A.C, Harris, S.E., and Janecek, T.R., 1995. Estimating lithology from nonintrusive reflectance spectra: Leg 138, In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H., (Eds.), Proc. ODP, Sci. Repts, 138: College Station, TX (Ocean Drilling Program), 413–427.Google Scholar
  113. Mix, A.C., Rugh, W., Pisias, N.G., and Veirs, S., Leg 138 Shipboard sedimentologists, and the leg 138 Scientific Party, 1992. Color reflectance spectroscopy: a tool for rapid characterization of deep-sea sediments. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H., (Eds.), Proc. ODP, Init. Repts, 138: College Station, TX (Ocean Drilling Program), 67–77.Google Scholar
  114. Moran, K., 1993. Notice to users of GRAPE data, JOIDES J., 19(3), 6.Google Scholar
  115. Moros, M., Endler, R., Lackschewitz, K.S., Wallrabe-Adams, H.-J., Mienert, J., and Lemke, W., 1997. Physical properties of Reykjanes Ridge sediments and their linkage to high-resolution Greenland Ice Sheet Project 2 ice core data, Paleoceanography, 12:687–695, 1997.CrossRefGoogle Scholar
  116. Morris, R.M., and Behl, Rard J., 1998. (ABSTRACT), X-ray computed tomography reveals correlation between bioturbated continental slope sediments and global climatic fluctuation, American Association of Petroleum Geologists Annual Meeting Expanded Abstracts (May 17–20), American Association of Petroleum Geologists, v. 1998, Tulsa, OK.Google Scholar
  117. Ogushwitz, P.R., 1985a. Applicability of the Biot theory. I. Low-porosity materials. J. Acoust. Soc. Am., 77:429–440.CrossRefGoogle Scholar
  118. Ogushwitz, P.R., 1985b. Applicability of the Biot theory. II. Suspensions. J. Acoust. Soc. Am., 77:441–452.CrossRefGoogle Scholar
  119. Ogushwitz, P.R., 1985c. Applicability of the Biot theory. III. Wave speeds versus depth in marine sediments. J. Acoust. Soc. Am., 77:453–463.CrossRefGoogle Scholar
  120. Oldfield, F., 1991. Environmental magnetism—A personal perspective. Quaternary Science Reviews, 10:73–85.CrossRefGoogle Scholar
  121. Ortiz, J.D. Mix, A., Harris, S., and O’Connell, S., 1999. Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments, Paleoceanography, 14:171–186.CrossRefGoogle Scholar
  122. Paillard, D., Labeyrie L., and Yiou P., 1996. Macintosh program performs time-series analysis, Eos Trans. AGU, 77, 379. (Note: this free software is available online at URL:http://www.agu.org/eoselec/96097e.html)Google Scholar
  123. Paulus, F.J., 1972. Leg 11 measurements of physical properties in sediments of the western North Atlantic and their relationship to sediment consolidation, in Hollister, C.D., Ewing, J.I, et al., Init. Repts, DSDP 11: Washington, (U.S. Govt. Printing office), 667–722.Google Scholar
  124. Pisias, N.G., Mayer, L.A., and Mix, A.C., 1995. Paleoceanography of the Eastern Equatorial Pacific during the Neogene: Synthesis of Leg 138 Drilling Results. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 5–21.Google Scholar
  125. Pointecorvo, B., 1941. Neutron well-logging, Oil and Gas Journal, 40:32–33.Google Scholar
  126. Prell, W.L., and Gardner, J.V., et al., Init. Repts. DSDP, 68: Washington (U.S. Govt. Printing Office), 495 pp.Google Scholar
  127. Preiss, K., 1968. Non-destructive laboratory measurement of marine sediment density in a core barrel using gamma radiation. Deep-Sea Research, 15:401–407.Google Scholar
  128. Pudsey, C.J., and Howe, J.A., 1998. Quaternary history of the antarctic Circumpolar Current: evidence from the Scotia Sea, Mar. Geology, 148:83–112.Google Scholar
  129. Rack, F.R., 1997. (ABSTRACT) Geotechnical stratigraphy of the Nordic Seas: Implications for paleoceanography. Development of Paleoceanography as a New Field of Science. Meeting Commemorating the 50th Anniversary of the Swedish Deep Sea Expedition. August 18–21, The Royal Swedish Academy of Sciences, Stockholm, Sweden, p. 87.Google Scholar
  130. Rack, F., 1998. Tomorrow’s Technology Today, Interim report of the IMAGES standing committee on “New Technologies in Sediment Imaging”, (http://www.joi-odp.org/T3_report/T3_report.html).
  131. Rack, F.R., Balcom, B.J., MacGregor, R.P., and Armstrong, R.L., 1998a. Magnetic resonance imaging of the Lake Agassiz-Lake Winnipeg transition, J. Paleolimnology, 19:255–264.CrossRefGoogle Scholar
  132. Rack, F.R., Bloemendal, J., Wolf-Welling, T.C.W., O’Connell, S., Cremer, M., Winkler, A., Thiede, J., Black, K., and Hood, J., 1996a. Development of physical properties relationships, interhole composite depth profiles, and sedimentologic ground truthing of multi-sensor core measurements: A synthesis of results. In Thiede, J., Myhre, A., Firth, J., et al., Proc. ODP, Sci. Results, 151: College Station, TX (Ocean Drilling Program), p. 595–626.Google Scholar
  133. Rack, F.R., Bryant, W.R., and Julson, A.P., 1993. Microfabric and physical properties of deep-sea high latitude carbonate oozes. In Rezak, R., and Lavoie, D.L. (Eds.), Carbonate Microfabrics. New York (Springer-verlag), 129–147.Google Scholar
  134. Rack, F., Mayer, L., Jarrett, K., Piper, D., Moran, K., Bilodeau, G., de Vernal, A., Hillaire Marcel, C., Hiscott, R., and Aksu, A., 1996b. (ABSTRACT) Investigations of MD-101 cores from the continental margin of eastern Canada: Initial results from the IMAGES Program. Am. Geophys. Union Fall Meeting, December 15–19, San Francisco, CA, EOS Transactions, Vol. 77(46):F21.Google Scholar
  135. Rack, F.R., and Pittenger, A., 1992. Geotechnical stratigraphy of Neogene sediments: Maud Rise and Kergulen Plateau. In Kennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarctic Research Series, v. 56, Washington (American Geophysical Union), 203–230.Google Scholar
  136. Rack, F.R., Ribes, A.C., Tsintzouras, G., Marshall, G., Damaskinos, S., and Dixon, A.E., 1998b. (ABSTRACT) Preliminary results from biomedical imaging of lake and ocean sediments. Proc. Sixth International Conference on Paleoceanography, August 24–28, 1998 (Lisbon, Portugal), p. 189.Google Scholar
  137. Ribes, A.C., Marshall, G., Tsintzouras, G., Damaskinos, S., Dixon, A.E., and Rack, F., 1998. (ABSTRACT) The Confocal Scanning Beam MACROscope/Microscope Applied to Iaging Ocean/Lake Core Geological Specimens. Canadian Association of Physicists (CAP) Annual Meeting, June 15, 1998 (Waterloo, Ont.), Physics in Canada, 54(3):10.Google Scholar
  138. Richards, A.F., Hirst, T.J., and Parks, J.M., 1974. Bulk density—water content relationships in marine silts and clays. J. Sedimentary Petrology, 44:1004–1009.Google Scholar
  139. Röhl, U, and L.J. Abrams, L.J., 1998. High-resolution downhole and non-destructive core measurements from Sites 999 and 1001 in the Caribbean Sea: application to the late Paleocene thermal maximum, (submitted to Proc. ODP, Sci. res., Vol. 165).Google Scholar
  140. Robinson, S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter., 42:22–47.CrossRefGoogle Scholar
  141. Robinson, S.G., 1993. Lithostratigraphic applications for magnetic susceptibility logging of deep-sea sediment cores: examples from ODP Leg 115, In Hailwood, E.A., and Kidd, R.B. (Eds.), High resolution stratigraphy, 70, Geological Society: London, pp. 65–98.Google Scholar
  142. Robinson, S.G., and McCave, I.N., 1994. Orbital forcing of bottom-current enhanced sedimentation on Feni Drift, NE Atlantic, during the mid-Pleistocene. Paleoceanogr., 9(6):943–972.CrossRefGoogle Scholar
  143. Robinson, S.G., Maslin, M.A., and McCave, I.N., 1995. Magnetic susceptibility variability in Upper Pleistocene deep-sea sediments of the NE Atlantic: Implications for ice rafting and paleocirculation at the last glacial maximum, Paleoceanography, 10:221–250.CrossRefGoogle Scholar
  144. Ruddiman, W.F., Cameron, D., and Clement, B.M., 1987. Sediment disturbance and correlation of offset holes drilled with the Hydraulic Piston Corer Leg 94. In Ruddiman, W.F., Kidd, R.B., Thomas, E. et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office), 615–634.Google Scholar
  145. Rutter, N.W., Ding, Z.L., and Liu, T.S., 1996. Long paleoclimatic records from China. Geophysica, 32:7–34.Google Scholar
  146. Schlanger, S.O., and Douglas, R.G., 1974. The pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. In Hsu, K.J., and Jenkyns, H.C. (Eds), Pelagic Sediments on Land and Under the Sea. International Association of Sedimentologists Spec. Publ., 1:117–148.Google Scholar
  147. Schreiber, B.C., 1968. Sound velocity in deep sea sediments. J. Geophys. Res., 73:1259–1268.CrossRefGoogle Scholar
  148. Schultheis, P.J., and McPhail, S.D., 1989. An automated P-wave Logger for recording Fine-Scale Compressional Wave Velocity Structures in Sediments, In Ruddiman, W., Sarnthein, M., et al., Proc. ODP, Sci. Results, 108, College Station TX (Ocean Drilling Environmental MagnetismProgram), 407–413.Google Scholar
  149. Schultheiss, P.J., and Weaver, P.P.E., 1992. Multi-sensor core logging for science and industry, In Proceedings Ocean 92, Mastering the Ocean Sciences Through Technology, 2:608–613.CrossRefGoogle Scholar
  150. Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A., 1995. A new late Neogene time scale: Application to Leg 138 sites. In Pisias, N.G., Mayer, L.A., Janecek, T.J., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 73–101.Google Scholar
  151. Shephard, L.E., and Bryant, W.R., 1983. Geotechnical properties of lower trench inner-slope sediments. Tectonophysics, 99:279–312.CrossRefGoogle Scholar
  152. Simons, F.J, Verhelst, F., and Swennen, R., 1997. Quantitative characterization of coal by means of microfocal X-Ray computed microtomography (CMT) and color image analysis (CIA), Int. J. Coal Geology, 34:69–88.CrossRefGoogle Scholar
  153. Stoner, J.S., Channeil, J.E.T., and Hillaire-Marcel, C., 1995a. Magnetic properties of deep-sea sediments off southwest Greenland: Evidence for major differences between the last two deglaciations. Geology, 23(3):241–244.CrossRefGoogle Scholar
  154. Stoner, J.S., Channeil, J.E.T., and Hillaire-Marcel, C., 1995b. Late Pleistocene relative geomagnetic paleoin-tensity from the deep Labrador Sea: Regional and global correlations. Earth Planet. Sci. Letts., 134:237–252.CrossRefGoogle Scholar
  155. Stoner, J.S., Channell, J.E.T., and Hillaire-Marcel, C., 1996. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers. Paleoceanogr., 11(3):309–325.CrossRefGoogle Scholar
  156. Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., and Mareschal, J.-C., 1994. High-resolution rock magnetic study of a Late Pleistocene core from the Labrador Sea. Can. J. Earth Sci., 31:104–114.CrossRefGoogle Scholar
  157. Storms, M.A., Nugent, W., and Cameron, D., 1983. Hydraulic piston coring—A new era in ocean research. In Design and Operation of the Hydraulic Piston Corer. IPOD/DSDP Development Engineering Technical Report No., 12:1–24.Google Scholar
  158. Thompson, R.J., Bloemendal, J., Dearing, J.A., Oldfield, F., Rummery, T.A., Stober, J.C., and Turner, G.M., 1980. Environmental applications of magnetic measurements. Science, 207:481–486.CrossRefGoogle Scholar
  159. Thompson, R., and Oldfield, F., 1986. Environmental Magnetism. Winchester, MA, Allen, and Unwin, 227 pp.CrossRefGoogle Scholar
  160. Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K., Gulot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T., and Williamson, D., 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature, 371:503–506.CrossRefGoogle Scholar
  161. Tiedemann, R., and Haug, G., 1995. Astronomical calibration of cycle stratigraphy for Site 882 in the Northwest Pacific. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 283–292.Google Scholar
  162. Timblin, L.O., 1957. Density measurement of saturated submersed sediments by gamma-ray scattering, U.S. Dept of Interior, Bureau of Reclamation, Chemical Engineering Laboratory, Rept., SI-11, 34 pp.Google Scholar
  163. Tittman, J.S., and Wahl, J.S., 1965. The physical foundation of formation density logging (gamma-gamma). Geophysics, 30:284–294.CrossRefGoogle Scholar
  164. Urmos, J., and Wilkens, R.H., 1993. In situ velocities in pelagic carbonates: New insights from Ocean Drilling Program Leg 130, Ontong Java Plateau. J. Geophys. Res., 98:7903–7920.CrossRefGoogle Scholar
  165. Vautard, R., Yiou, P., and Ghil, M., 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D, 58:95–126.Google Scholar
  166. Verosub, K.L., and Roberts, A.P., 1995. Environmental magnetism: Past, present, and future. J. Geophys. Res., 100:2175–2192.CrossRefGoogle Scholar
  167. Wahl J.S., Tittmann, J., Johnstone, C.W., and Alger, R.P., 1964. The dual spacing formation density log, Journal of Pet. Tech., 16:1411–1416.Google Scholar
  168. Weaver, P.P.E., and Schultheiss, P.J., 1990. Current methods for obtaining, logging and splitting marine sediment cores. In Hailwood, E.A., and Kidd, R.B. (Eds.). Marine geological surveying and sampling. Kluwer, Dordrecht, pp. 85–101.CrossRefGoogle Scholar
  169. Weber, M.E., 1998. Estimation of biogenic carbonate and opal by continuous non-destructive measurements in deep-sea sediments: application to the eastern Equatorial Pacific, Deep-Sea Research 1, 45:1955–1975.CrossRefGoogle Scholar
  170. Weber, M.E., Messen, F., Kuhn, G., and Wiedicke, M., 1997. Calibration and application of marine sedimentary physical properties using a multi-sensors core logger, Marine Geology, 136:151–172.CrossRefGoogle Scholar
  171. Whitmarsh, R.B., 1971. Precise sediment density determination by gamma-ray attenuation alone, J. Sediment. Petrol., 71:882–883.Google Scholar
  172. Wilkens, R.H., Cheng, C.H., and Meredith, J.A., 1992. Evaluation and prediction of shear wave velocities in calcareous marine sediments and rocks. J. Geophys. Res., 97:9297–9305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph D. Ortiz
    • 1
  • Frank R. Rack
    • 2
  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  2. 2.Joint Oceanographic Institutions, Inc.USA

Personalised recommendations