Skip to main content

Polar Stratospheric Cloud Forcing in a Greenhouse World

A Climate Modeling Sensitivity Study

  • Chapter
Reconstructing Ocean History

Abstract

Water vapor clouds in the stratosphere can produce surface warming via radiative effects. These (type II) polar stratospheric clouds (PSCs) form only in regions of very low temperature and as a result the clouds only exist in winter stratospheric polar regions. The formation of Type II PSCs may be linked to tropospheric methane concentrations because oxidation of tropospheric methane is a significant source of stratospheric water vapor. It has been proposed that substantial tropospheric methane existed during the early Eocene, derived from extensive wetland regions and enhanced by global warmth. Increased tropospheric methane concentrations may have led to greater amounts of stratospheric water vapor, creating greater areal extents of PSCs, and/or higher emissitivity values of the clouds. To explore this idea, we have included an extreme case of noninteractive PSCs in a climate modeling sensitivity study of the early Eocene. Results show that the clouds can cause up to 20°C of surface warming in winter high latitudes. The warming is caused by direct radiative responses to the clouds and by indirect seaice/albedo feedback mechanisms. The temperature response is concentrated at high latitudes, and tropical temperatures are not significantly affected. The temperature pattern produced by the PSCs corresponds more closely to proxy records of high latitude Eocene temperatures than results from other modeling studies to date. Wind patterns, wind-driven oceanic upwelling, and inferred surface salinity also show a response to the PSC forcing. PSCs may have been a significant climate forcing factor for past time intervals associated with high concentrations of atmospheric methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron, E.J., P.J. Fawcett, W.H. Peterson, D. Pollard, and S.L. Thompson, A simulation of midCretaceous climate, Paleoceanog., 10, 953–962, 1995.

    Article  Google Scholar 

  • Bralower, T., D.J. Thomas, J.C. Zachos, and others, High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link?, Geology, 25, 963–966, 1997.

    Article  Google Scholar 

  • Brasseur, G., and M.M. Verstraete, Atmospheric chemistry-climate interactions, in Climate and Geo-Sciences (eds. A. Berger et al.) 279–302 (Kluwer Acad, Pubs, and Amsterdam,) 1989.

    Chapter  Google Scholar 

  • Bromwich, D.H., R.Y. Tzeng, and T.R. Parish, Simulation of the modern Arctic climate by the NCAR CCM1, J. Clim., 7, 1050–1069, 1994.

    Article  Google Scholar 

  • Bush, A.B.G., and S.G.H. Philander, The late Cretaceous: Simulation with a coupled atmosphere-ocean general circulation model, Paleoceanog., 12, 495–516, 1997.

    Article  Google Scholar 

  • Cao, M., K. Gregson, and S. Marshall, Global methane emission from wetlands and its sensitivity to climate change, Atmospheric Environment, 32, 19, 3293–3299, 1998.

    Article  Google Scholar 

  • Danabasoglu, G., On the wind-driven circulation of the uncoupled and coupled NCAR Climate System Model, J. Clim., 1442–1454, 1998.

    Google Scholar 

  • David, C., S. Godin, G. Megie, Y. Emery, and C. Flesia, Physical state and composition of polar stratospheric clouds inferred from airborne lidar measurements during SESAME, J. Atmos. Chem., 27, 1–16, 1997.

    Article  Google Scholar 

  • Dickens, G., M.M. Castillo, and J.C.G. Walker, A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25, 259–262, 1997.

    Article  Google Scholar 

  • Fowler, L.D., and D.A. Randall, A global radiative-convective feedback, Geophys. Res. Lett., 21, 18, 2035–2038, 1994.

    Article  Google Scholar 

  • Greenwood, D.L., and S. Wing, Eocene continental climates and latitudinal temperature gradients, Geology, 23, 1044–1048, 1995.

    Article  Google Scholar 

  • Hellerman, S., and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 17, 1093–1104, 1983.

    Article  Google Scholar 

  • Huber, B.T, D.A. Hodell, and C.P. Hamilton, Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients, Geological Society of America Bulletin, 107, 1164–1191, 1995.

    Article  Google Scholar 

  • Huber, M., and L.C. Sloan, Upwelling, gyres, and the wind-driven ocean circulation during warm climate intervals (abstract), Eos Trans., AGU, 79, 463, 1998.

    Google Scholar 

  • Huber, M., and L.C. Sloan, Warm climate transitions: A general circulation modeling study of the Late Paleocene Thermal Maximum (∼56Ma), J. Geophys. Res., 104, 16633–16655, 1999.

    Article  Google Scholar 

  • Kinne, S., and O.B. Toon, Radiative effects of polar stratospheric clouds, Geophys. Res. Lett., 17, 4, 373–376, 1990.

    Article  Google Scholar 

  • Kutzbach, J.E., G. Bonan, J. Foley, and S.P. Harrison, Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene, Nature, 384, 623–626, 1996.

    Article  Google Scholar 

  • Lelieveld, J., and P.J. Crutzen, Indirect chemical effects of methane on climate warming, Nature, 355, 339–342, 1992.

    Article  Google Scholar 

  • Lelieveld, J., P.J. Crutzen, and C. Bruhl, Climate effects of atmospheric methane, Chemosphere, 26, 739–768, 1993.

    Article  Google Scholar 

  • Markwick, P.J., Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate, Palaeogeog., Palaeoclim., Palaeoecol, 137, 205–271, 1998.

    Article  Google Scholar 

  • Markwick, P.J., “Equability”, continentality and Tertiary “climate”: the crocodilian perspective, Geology, 22, 613–616, 1994.

    Article  Google Scholar 

  • McCormick, M.P., C.R. Trepte, and M.C. Pitts, Persistence of polar stratospheric clouds in the southern polar region, J. Geophys. Res., 94, D9, 11241–11251, 1989.

    Article  Google Scholar 

  • Otto-Bliesner, B., G.R. Upchurch, and Jr., Vegetation-induced warming of high-latitude regions during the Late Cretaceous period, Nature, 385, 804–807, 1997.

    Article  Google Scholar 

  • Pollard, D., J.C. Bergengren, L.M. Stillwell-Soller, B. Felzer, and S.L. Thompson, Climate simulations for 10,000 and 6,000 years BP using the GENESIS global climate model, Paleoclimate., 2, 183–218, 1998.

    Google Scholar 

  • Slingo, A., and J.M. Slingo, The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments., QJR Meteorol. Soc., 114, 1027–1062, 1988.

    Article  Google Scholar 

  • Sloan, L.C., and C. Morrill, Orbital forcing and Eocene continental temperatures, Palaeogeog., Palaeoclim., Palaeoecol, 144, 21–35, 1998.

    Article  Google Scholar 

  • Sloan, L.C., and D. Pollard, Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world, Geophys. Res. Lett., 25, 3517–3520, 1998.

    Article  Google Scholar 

  • Sloan, L.C., and E. Thomas, Global Climate of the Late Paleocene Epoch: Modeling the circumstances associated with a climatic “event”, in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, edited by M.-P. Aubry, S. Lucas, and W.A. Berggren, pp. 138–157, Columbia Univ. Press, 1998.

    Google Scholar 

  • Sloan, L.C., and D.K. Rea, Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study, Palaeogeog., Palaeoclim., Palaeoecol., 119, 275–292, 1995.

    Article  Google Scholar 

  • Sloan, L. Cirbus, J.C.G. Walker, and T.C. Moore, Jr., The role of oceanic heat transport in Early Eocene climate, Paleoceanog., 10, 347–356, 1995.

    Article  Google Scholar 

  • Sloan, L. Cirbus, J.C.G. Walker, T.C. Moore, Jr., D.K. Rea, and J.C. Zachos, Possible methane-induced polar warming in the early Eocene, Nature, 357, 320–322, 1992.

    Article  Google Scholar 

  • Thompson, S.L., and D. Pollard, Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS Version-2 global climate model, J. Climate, 10, 871–900, 1997.

    Article  Google Scholar 

  • Wilson, P.A., and B.N. Opdyke, Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate, Geology, 24, 555–558, 1996.

    Article  Google Scholar 

  • Wing, S., and D.L. Greenwood, Fossils and fossils climate: The case for equable continental interiors in the Eocene, Roy. Soc. London Phil. Trans., B, 341, 243–252, 1993.

    Article  Google Scholar 

  • Zachos, J.C., L.D. Stott, and K.C. Lohmann, Evolution of early Cenozoic marine temperatures, Paleoceanog., 9, 353–387, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sloan, L.C., Huber, M., Ewing, A. (1999). Polar Stratospheric Cloud Forcing in a Greenhouse World. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics