Skip to main content

Primary Production Response to Orbitally Induced Variations of the Southern Oscillation in the Equatorial Indian Ocean

  • Chapter
Reconstructing Ocean History

Abstract

In surface samples from the Indian Ocean, assemblages of Coccolithophorids (one of the most common oceanic phytoplankton groups) are clearly linked to surface primary production (PP). In oligotrophic regions nannofloras are dominated by Florisphaera profunda and small (2–3μm) Gephyrocapsa, in regions of high productivity by Gephyrocapsa oceanica and Emiliania huxleyi. We calibrated the spatial distribution of two nannofossil indices to annual mean PP as estimated from Coastal Zone Colour Scanner satellite images. The first index is based on the relative abundance of F. profunda in the total nannoflora, and the second one on the relative abundance of G oceanica in the Gephyrocapsa assemblage.

We applied this method to samples from cores MD900963 (5°03N-73°53E at a water depth of 2,446m) and MD900949 (2°05N-76°07E, at a water depth of 3,700m). Continuous records over the last 910kyr and 420kyr respectively show strong fluctuations in primary productivity, which are coherent and in phase with the February insolation at the equator. Primary productivity slight leads oxygen isotope values of planktonic forminifera in the precession band, but in the eccentricity band PP and δ18O are in opposite phase.

These data imply that the PP in the equatorial Indian Ocean is controlled directly by insolation, and is thus independent of fluctuations in global ice volume. We suggest that this control is exerted through the intensity of the Indian Equatorial Westerly winds (IEW), which show strong interannual variability as a result of Southern Oscillation, and that precessional forcing of the Southern Oscillation thus drives the PP fluctuations. We speculate that the Walker circulation varies independent from global ice volume variations, and significantly influences PP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasen, D.J., and Ravelo, A.C., 1997. Tropical Pacific Ocean thermocline depth reconstruction for the last glacial maximum. Paleoceanography, 12(3):395–413.

    Article  Google Scholar 

  • Anderson, D.M., and Prell, W.L., 1993. A 300 kyr record of upwelling off Oman during the late Quaternary: evidence of the Asian Southwest monsoon. Paleoceanography, 8(2):193–208.

    Article  Google Scholar 

  • Antoine, D., André, J.-M., and Morel, A., 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10(1):57–69.

    Google Scholar 

  • Barnett, T.P., 1983. Interaction of the monsoon and Pacific trade wind system at interannual time scales. Part I: the equatorial zone. Monthly Weather Review, 111(4):756–773.

    Article  Google Scholar 

  • Bassinot, F.C. et al., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Let., 126:91–108.

    Article  Google Scholar 

  • Beaufort, L., 1994. Climatic importance of the modulation of the lOOkyr cycle inferred from 16m. y. long Miocene records. Paleoceanography, 9(6):821–834.

    Google Scholar 

  • Beaufort, L., 1996. Dynamics of the monsoon in the Equatorial Indian Ocean over the last 260,000 years. Quatern. Intern., 31:13–18.

    Article  Google Scholar 

  • Beaufort, L., and Aubry, M.-P., 1990. Fluctuations in the composition of late Miocene calcareous nannofossil assemblages as a response to orbital forcing. Paleoceanography, 5(6):845–865.

    Article  Google Scholar 

  • Beaufort, L. et al., 1997. Insolation cycles as a major control of the Equatorial Indian Ocean primary production. Science, 278:1451–1454.

    Article  Google Scholar 

  • Bender, M.S., Sowers, T., and Labeyrie, L., 1994. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochemical Cycles, 8(3):363–376.

    Article  Google Scholar 

  • Berger, W.H., Fisher, K., Lai, C., and Wu, G., 1987. Ocean productivity and organic carbon flux. Parti Overview and maps of primary production and export production. SIO Reference 87-30, University of California, San Diego.

    Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., and Johnsen, S.J., 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394:739–743.

    Article  Google Scholar 

  • Bjerkness, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Weath. R., 97:163–172.

    Article  Google Scholar 

  • Broerse, A.T.C., Brummer, G.-J.A., and van Hinte, in press. Coccolithophore export production in response to monsoonal upwelling off Somalia (Northwestern Indian Ocean), Deep Sea Res. II.

    Google Scholar 

  • Cadet, D.L., 1985. The Southern Oscillation over the Indian Ocean. Journal of Climatology, v5 n2, pp. 189–212, 5(2): 189-212.

    Article  Google Scholar 

  • Caulet, J.-P., Vénec-Peyré, M.-T., Vergnaud-Grazzini, C., and Nigrini, C., 1992. Variation of South Somalian upwelling during the last 160ka: radiolarian and foraminifera records in core MD 85674. In: C.P. Summerhayes, W.L. Prell, and K.C. Emeis (Editors), Upwelling systems: evolution since the early Miocene. Geological Society Special Publication, London, pp. 379–389.

    Google Scholar 

  • Cayre, O., Beaufort, L., and Vincent, E., 1999. Paleoproductivity in the Equatorial Indian Ocean for the last 260,000 yr: A transfer function based on planktonic foraminifera, Quaternary Science Reviews, 18:839–857.

    Article  Google Scholar 

  • Clemens, S., Prell, W., Murray, D., Shimmield, G., and Graham, W., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353:720–725.

    Article  Google Scholar 

  • Clemens, S.C., and Prell, W.L., 1990. Late Pleistocene variability of arabian sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments. Paleoceanography, 5(2):109–145.

    Article  Google Scholar 

  • De Noblet, N.B., Braconnot, P., Joussaume, S., and Masson, V., 1996. Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6kBP. Climate Dynamics, 12(9):589–603.

    Article  Google Scholar 

  • Duplessy, J.C., 1982. Glacial to interglacial cotrasts in the northern Indian Ocean. Nature, 295:494–498.

    Article  Google Scholar 

  • Gartner, S., 1988. Paleoceanography of the mid-Pleistocene. Marine Micropaleontology, 13(1):23–46.

    Article  Google Scholar 

  • Graham, N.E., and Barnett, T.P., 1987. Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238(4827):657–659.

    Article  Google Scholar 

  • Harris, S.E., and Mix, A.C., 1999. Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments. Quaternary Research, 51:14–26.

    Article  Google Scholar 

  • Hastenrath, S., Nicklis, A., and Greischar, L., 1993. Atmospheric-Hydrospheric mechanisms of clmate anomalies in the western Equatorial Indian Ocean. J. Geophys. Res., 98:20219–20235.

    Article  Google Scholar 

  • Houghton, S.D., and Guptha, M.V.S., 1991. Monsoonal and fertility controls on Recent marginal sea and continental shelf coccolith assemblages from the western Pacific and northern Indian oceans. Marine Geology, 97(3-4):251–259.

    Article  Google Scholar 

  • Imbrie, J. et al., 1993. On the structure and origin of major Glaciation cycles 2. the 100,000-year cycle. Paleoceanography, 8(6):699–736.

    Article  Google Scholar 

  • Imbrie, J. et al., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: A.L. Berger, J. Imbrie, J.D. Hays, G. Kulka, and B. Saltzman (Editors), Milankovitch and Climate, Part 1. D. Reidel, Dordrecht, pp. 269–305.

    Google Scholar 

  • Imbrie, J., and Imbrie, J.Z., 1980. Modeling the climate response to orbital variations. Science, 207:943–953.

    Article  Google Scholar 

  • Latif, M., and Barnett, T.P., 1995. Interactions of the tropical Oceans. Journal of Climate, 8:952–964.

    Article  Google Scholar 

  • Lau, K.-M., Sheu, P.-J., and Kang, I.-S., 1994. Multiscale low-frequency circulation modes in the global atmosphere. Journal of the Atmospheric Sciences, 51(9):1169–1193.

    Article  Google Scholar 

  • Levitus, S., 1982. Climatological Atlas of the World Ocean, NOAA, Professional Paper 13, pp. 173.

    Google Scholar 

  • Martinson, D.G. et al., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat. Res., 27:11–29.

    Article  Google Scholar 

  • McCreary, J.P., Kohler, K.E., Hood, R.R., and Olson, D.B., 1996. A four-component ecosystem model of biological activity in the Arabian Sea. Progress in Oceanography, 37:193–240.

    Article  Google Scholar 

  • Meehl, G.A., 1987. The Annual cycle and interanual vaiability in the tropical Pacific and Indian Ocean regions. Mon. Weather Rev., 115:25–70.

    Article  Google Scholar 

  • Meehl, G.A., 1993. A coupled air-sea biennial mechanism in the Tropical Indian and Pacific regions: Role of the ocean. Journal of Climate, 6:31–41.

    Article  Google Scholar 

  • Mix, A.C., 1989a. Influence of productivity variations on long-term atmospheric CO2. Nature, 337(6207): 541–544.

    Article  Google Scholar 

  • Mix, A.C., 1989b. Pleistocene Paleoproductivity: Evidence from Organic Carbon and foraminiferal species. In: Productivity of the Ocean: Present and past, eds. W.H. Berger, V.S. Smetacek, and G. Wefer, J. Wiley & Sons Lim., Chichester, pp. 313–340.

    Google Scholar 

  • Molfino, B., and McIntyre, A., 1990. Precessional forcing of the nutricline dynamics in the Equatorial Atlantic. Science, 249:766–769.

    Article  Google Scholar 

  • Nagai, T., Kitamura, Y., Endoh, M., and Tokioka, T., 1995. Coupled atmosphere-ocean model simulations of El Nino/Soutern Oscillation with and without an active Indian Ocean. Journal of Climate, 8:3–14.

    Article  Google Scholar 

  • Nair, R.R. et al., 1989. Increased particle flux to the deep ocean related to monsoons. Nature, 338:749–751.

    Article  Google Scholar 

  • Okada, H., and Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res., 20(4):355–374.

    Google Scholar 

  • Pisias. N.G., and D. Rea, 1988. Late Pleistocene paleoclimatology of the central equatorial pacific: Sea surface response to the southeast trade winds, Paleoceanography, 3(1):21–38.

    Article  Google Scholar 

  • Pisias, N.G., and Mix, A.C., 1997. Spatial and temporal océanographic variability of the eastern equatorial Pacific during the late Pleistocene: Evidence from Radiolaria microfossils. Paleoceanography, 12(3):381–393.

    Article  Google Scholar 

  • Paillard, D., Labeyrie, L., and Yiou, P., 1996. Macintosh program performs time-series analysis. Eos Trans. AGU, 77:379.

    Google Scholar 

  • Pokras, E.M., and Mix, A., 1987. Earth’s precession cycle and Quaternary climatic change in tropical Africa. Nature, 326(6112):486–487.

    Article  Google Scholar 

  • Prell, W.L. et al., 1980. Surface circulation of the Indian Ocean during the last Glacial Maximum, approximately 18,000yr B.P. Quatern. R., 14:309–336.

    Article  Google Scholar 

  • Prell, W.L., and Kutzbach, J.E., 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360:647–652.

    Article  Google Scholar 

  • Reverdin, G.C., Cadet, D.L., and Gutzier, D., 1986. Interannual displacement of convection and surface circulation of the equatorial Indian Ocean. Quarterly Journal—Royal Meteorological Society, 112:43–67.

    Article  Google Scholar 

  • Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., and Ganssen, G., 1997. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Res. part II, 99: 1961–1980.

    Google Scholar 

  • Salby, M.L., and Hendon, H.H., 1994. Intraseasonal behavior of clouds, temperature, and Motion in the tropics. Journal of the Atmospheric Sciences, 51(15):2207–2224.

    Article  Google Scholar 

  • Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc. IEEE, 70(9):1055–1096.

    Article  Google Scholar 

  • Vautard, R., and Ghil, M., 1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica, D35:395–424.

    Google Scholar 

  • Vénec-Peyré, M.-T., Caulet, J.-P., and Vergnaud Grazzini, C., 1995. Paleohydrographic changes in the Somali Basin (5°N upwelling and equatorial areas) during the last 160 kyr, based on correspondence analysis of foraminiferal and radiolarian assemblages. Paleoceanography, 10(3):473–491.

    Article  Google Scholar 

  • Wang, L., Sarnthein, M., Erlenkeuser, H., Grimait, J., Grootes, P., Heilig, S., Ivanovna, E., Keinast, M., Pelejero, C., and Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene high-resolution sediment records from the South China Sea, Marine Geology, 156:245–284.

    Article  Google Scholar 

  • Wyrtki, K., 1973. An Equatorial Jet in the Indian Ocean. Science, 181:1331–1338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaufort, L., Bassinot, F., Vincent, E. (1999). Primary Production Response to Orbitally Induced Variations of the Southern Oscillation in the Equatorial Indian Ocean. In: Abrantes, F., Mix, A.C. (eds) Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4197-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6883-0

  • Online ISBN: 978-1-4615-4197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics