Skip to main content

Ecological Aspects of Biological Phosphorus Removal in Activated Sludge Systems

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 16))

Abstract

Inorganic polyphosphate (poly-P) is a linear polymer of many tens or hundreds of inorganic phosphate (Pi) residues linked by high-energy phosphoanhydride bonds (Fig. 1) and usually consists of mixtures of different molecular sizes. Thermodynamically the standard free energy of hydrolysis of the anhydride linkage yields about 38 kJ per phosphate bond at pH 5. The energy storage function of poly-P depends on the ability of the bond cleavage reaction to effect phosphorylation and thereby conserve the energy associated with the hydrolytic action (Dawes, 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn K., and Kornberg, A., 1990, Polyphosphate kinase from Escherichia coli, J. Biol Chem. 265: 11734–117

    Google Scholar 

  • Akiyama M., Crooke E., and Kornberg, A., 1992, The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein, J. Biol. Chem. 267: 22556–22561.

    Google Scholar 

  • Akiyama M., Crooke E., and Kornberg, A., 1993, An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon, J. Biol. Chem. 268: 633–639.

    Google Scholar 

  • Appeldoorn, K. J., 1993, Ecological aspects of the biological phosphate removal from waste waters. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Appeldoorn K. J., Kortstee, G. J. J., and Zehnder, A. J. B., 1992a, Biological phosphate removal by activated sludge under defined conditions, Water Res. 26: 453–460.

    Google Scholar 

  • Appeldoorn K. J., Boom A. J., Kortstee, G. J. J., and Zehnder, A. J. B., 1992b, Contribution of precipitated phosphates and acid-soluble polyphosphate to enhanced biological phosphate removal, Water Res. 26: 931–943.

    Google Scholar 

  • Archibald, F.S., and Fridovich, I., 1982, Investigations of the state of the manganese in Lactobacillus plantarum, Arch. Biochem. Biophys. 215: 589–596.

    Google Scholar 

  • Ardern E., and Lockett, W. T, 1914, Experiments on the oxidation of sewage without the aid of filters, J. Soc. Chem. Ind. 33: 523–539.

    Google Scholar 

  • Auling G., Pilz, E, Busse, H.-J., Karrasch S., Streichan M., and Schün, G., 1991, Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp., Appl. Environ. Microbiol. 57: 3585–3592.

    Google Scholar 

  • Bark K., Sponner A., Kämpfer P., Grund S., and Dott, W., 1992, Differences in polyphosphate accumulation and phosphate adsorption by Acinetobacter isolates from wastewater producing polyphosphate: AMP phosphotransferase, Water Res. 20: 1511–1521.

    Google Scholar 

  • Barnard, J. L., 1976, A review of biological phosphate removal in activated sludge process, Water South. Afr. 2: 136–144.

    Google Scholar 

  • Bayer M. H., Costello G. P., and Bayer, M. E., 1982, Isolation and partial characterization of membrane vesicles carrying markers of the membrane adhesion sites, J. Bacteriol. 149: 758–767.

    Google Scholar 

  • Bayly, R. C, Duncan A., May J. W., Schembri M., Semertjis A., Vasiliadis G., and Raper, W. G. C, 1991, Microbiological and genetic aspects of the synthesis of polyphosphate by species of Acinetobacter, Water Sci. Technol. 23: 747–754.

    Google Scholar 

  • Beacham A. M., Seviour R. J., Lindrea, K. C, and Livingston, I., 1990, Genospecies diversity of Acinetobacter isolates obtained from a biological nutrient removal pilot plant of a modified UCT configuration, Water Res. 24: 23–29.

    Google Scholar 

  • Bonting, C. F. C, 1993, Polyphosphate metabolism in Acinetobacter johnsonii 210A, Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Bonting, C. F. C, Kortstee, G. J. J., and Zehnder, A. J. B., 1991, Properties of polyphosphate:AMP phosphotransferase of Acinetobacter strain 210A, J. Bacteriol. 173: 6484–6488.

    Google Scholar 

  • Bonting, C. F. C, Veen van H. W., Taverne A., Kortstee, G. J. J., and Zehnder, A. J. B., 1992a, Regulation of polyphosphate metabolism in Acinetobacter strain 210A grown in carbon-and phosphate-limited continuous cultures, Arch. Microbiol. 158: 139–144.

    Google Scholar 

  • Bonting, C. F. C, Willemsen, B. M. E, Akkermans-van Vliet W., Bouvet, P. J. M., Kortstee, G. J. J., and Zehnder, A. J. B., 1992b, Additional characteristics of Acinetobacter strain 210A and its identification as Acinetobacter johnsonii, FEMS Microbiol. Ecol. 102: 57–64.

    Google Scholar 

  • Bonting, C. F. C, Kortstee, G. J. J., Boekestein A., and Zehnder, A. J. B., 1993a, The elemental composition dynamics of large polyphosphate granules in Acinetobacter strain 210A, Arch. Microbiol. 159: 428–434.

    Google Scholar 

  • Bonting, C. F. C, Kortstee, G. J. J., and Zehnder, A. J. B., 1993b, Properties of polyphosphatase of Acinetobacter johnsonii 210A, Antonie Van Leeuwenhoek 64: 75–8

    Google Scholar 

  • Bordacs K., and Chiesa, S. C, 1989, Carbon flow patterns in enhanced biological phosphorus accumulating activated sludge cultures, Water Sci. Technol 21: 387–396.

    Google Scholar 

  • Brodisch, K. E. U., and Joyner, S. J., 1983, The role of microorganisms other than Acinetobacter in biological phosphate removal in activated sludge processes, Water Sci. Technol, 15: 117–125.

    Google Scholar 

  • Buchan, L., 1983, Possible biological mechanism of phosphorus removal, Water Sei Technol. 15: 87–103.

    Google Scholar 

  • Cashel M., and Rudd, K. E., 1987, The stringent response, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger, eds.), American Society for Microbiology, Washington, DC, pp. 1410–1438.

    Google Scholar 

  • Cloete T. E., and Stein, P. L., 1987, A combined fluorescent antibody-membrane filter technique for enumerating Acinetobacter in activated sludge, in: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), Pergamon Press, Oxford, England, pp. 335–338.

    Google Scholar 

  • Comeau Y., Hall K. J., Hancock, R. E. W., and Oldham, W. K., 1986, Biochemical model for enhanced biological phosphorus removal, Water Res. 20: 1511–1521.

    Google Scholar 

  • Crooke E., Akiyama M., Rao N. N., and Kornberg, A., 1994, Genetically altered levels of inorganic polyphosphate in Escherichia coli, J. Biol. Chem. 269: 6290–6295.

    Google Scholar 

  • Davelaar D., Davies T. R., and Wiechers, S. G., 1978, The significance of an anaerobic zone for the biological removal of phosphate from waste water, Water South Afr. 4: 54–59.

    Google Scholar 

  • Dawes, E. A., 1990, Novel microbial polymers: An introductory overview, in: Novel Biodegradable Microbial Polymers (E. A. Dawes, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–16.

    Google Scholar 

  • Duncan A., Vasiliadis G. E., Bayly, R. C, and May, J. W., 1988, Genospecies of Acinetobacter isolated from activated sludge showing enhanced removal of phosphate during pilot-scale treatment of sewage, Biotechnol. Lett. 10: 831–836.

    Google Scholar 

  • Egli, T, and Zehnder, A. J. B., 1994, Phosphate and nitrate removal, Curr. Opinion Biotechnol. 5: 275–284.

    Google Scholar 

  • Fuhs G. W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microbiol. Ecol. 2: 119–138.

    Google Scholar 

  • Halvorson, H. O., 1990, Some possible roles of polyphosphate in microorganisms, in: Novel Biodegradable Microbial Polymers (E. A. Dawes, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–211.

    Google Scholar 

  • Hara A., and Sy, J., 1983, Guanosine 5’-triphosphate, 3’-diphosphate, 5’-phosphohydrolase, J. Biol. Chem. 258: 1678–1683.

    Google Scholar 

  • Hardoyo, Yamada K., Muramatsu A., Anbe, Y, Kato J., and Ohtake, H., 1994, Molecular genetics of polyphosphate accumulation in Escherichia coli, in: Phosphate in Microorganisms: Cellular and Molecular Biology (A. Torriani-Gorini, S. Silver, and E. Yagil, eds.), American Society for Microbiology, Washington, DC, pp. 209–213.

    Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: structure, metabolism and function, Bacteriol. Rev. 30: 772–788.

    Google Scholar 

  • Harold F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphate in mutants of Aerobacter aero genes, J. Bacteriol. 89: 1262–1269.

    Google Scholar 

  • Hesselmann, R. P. X., Werlen, C, Hahn D., van derMeer J. R., and Zehnder, A. J. B., 1999, Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, System. Appl. Microbiol. 22: 454–465.

    Google Scholar 

  • Hiraishi A., Masamune K., and Kitamura, H., 1989, Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles, Appl. Microbiol. 55:897–901.

    Google Scholar 

  • Hsieh, P-C., Shenoy B. C., Jentoft J. E., and Phillips, N. R B., 1993, Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: Evidence that poly (P) and ATP glucokinase activities are catalyzed by the same enzyme, Protein Exp. Purif. 4: 76–84.

    Google Scholar 

  • Jenkins D., and Tandoi, V., 1991, The applied microbiology of enhanced biological phosphate removal—Accomplishments and needs, Water Res. 25: 1471–1478.

    Google Scholar 

  • Kato J., Yamamoto T., Yamada K., and Ohtake, H., 1993, Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes, Gene137: 237–2

    Google Scholar 

  • Kawaharasaki M., and Nakamura, K,. 1995, Some factors which affect the phosphorus uptake of a phosphorus-accumulating bacterium, strain NM-1, J. Ferment. Bioeng. 79: 190–192.

    Google Scholar 

  • Keasling J. D., Bertsch L., and Kornberg, A., 1993, Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase, Proc. Natl. Acad. Set USA 90:7029–7033.

    Google Scholar 

  • Keasling J. D., and Hupf, G. A., 1996, Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Appl. Environ. Microbiol. 62: 743–746.

    Google Scholar 

  • Kerrn-Jespersen J. P., and Henze, M., 1993, Biological phosphorus uptake under anoxic and aerobic conditions, Water Res. 27:617–624.

    Google Scholar 

  • Kjelstad B., Johnsson A., Furuheim K. M., Bergan A. S., and Krane, J., 1989, Hyperthermia induced polyphosphate changes in Propionibacterium acnes as studied by P-NMR, Z Naturforsch. 44: 45–48.

    Google Scholar 

  • Kornberg, S. R., 1957, Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli, Biochim. Biophys. Acta 26: 294–300.

    Google Scholar 

  • Kornberg, A., 1994, Inorganic polyphosphate: a molecular fossil has come to life, in: Phosphate in Microorganisms: Cellular and Molecular Biology (A. Torriani-Gorini, S. Silver, and E. Yagil, eds.), American Society for Microbiology, Washington, DC, pp. 204–208.

    Google Scholar 

  • Kornberg, A., 1995, Inorganic polyphosphate: Toward making a forgotten polymer unforgettable, J. Bacteriol. 177: 491–496.

    Google Scholar 

  • Kortstee, G. J. J., Appeldoorn K. J., Bonting, C. F. C, Niel van, E. W. J., and Veen van, H. W., 1994, Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal, FEMS Microbiol. Rev. 15: 137–153.

    Google Scholar 

  • Kuba, T, Smolders G., Loosdrecht van, M. C. M., and Heijnen, 1993, Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor, Water Sci. Technol. 27: 241–252.

    Google Scholar 

  • Kuba, T, Loosdrecht van, M. C. M., and Heijnen, J. J., 1995, Biological phosphate removal under denitrifying conditions, RWZI 2000/94-12, in: Toekomstige Generatie Rioolwaterzuiveringsinrichtingen RWZI 2000, RIZA/STOWA, Lelystad/Utrecht, pp. 1–83.

    Google Scholar 

  • Kulaev, I. S., 1979, The Biochemistry of Inorganic Polyphosphates, John Wiley and Sons, Chichester, England.

    Google Scholar 

  • Kulaev, I. S., 1990, The physiological role of inorganic polyphosphates in microorganisms: some evolutionary aspects, in: Novel Biodegradable Microbial Polymers (E. A. Dawes, ed), Kluwer Academic Publishers, Dordrecht, pp. 223–233.

    Google Scholar 

  • Lee, P. C, Bochner B. R., and Ames, B. N., 1983, AppppA, heat-shock stress, and cell oxidation, Proc. Natl. Acad. Sci. USA 80: 7496–7500.

    Google Scholar 

  • Lee R. M., Hartman P. A., Stahr H. M., Olson D. G., and Williams, F. D., 1994, Antibacterial mechanism of long-chain polyphosphate in Staphylococcus aureus, J. Food Prot. 57: 289–294.

    Google Scholar 

  • Liu, W. T, Mino, T, Matsuo T, and Nakamura, K., 1996, Biological phosphorus removal processes—Effect of pH on anaerobic substrate metabolism, Water Sci. Technol. 34: 25–32.

    Google Scholar 

  • Marais, G. V. R., Loewenthal R. E., and Siebritz I. P., 1983, Review: Observations supporting phosphate removal by biological excess uptake, Water Sci. Technol. 17: 15–41.

    Google Scholar 

  • Meganck, M. J. T, 1987, Study of the kinetics and mechanisms of enhanced biological phosphate removal from wastewater, Ph. D. Thesis, Catholic University of Leuven, Leuven, Belgium.

    Google Scholar 

  • Meganck, M. T. J., and Faup, G. M., 1988, Enhanced biological phosphorus removal from waste waters, Biotreatment Syst 3: 11–204.

    Google Scholar 

  • Michels, P. A. M., Michels, J. P. J., Boonstra J., and Konings, W. N., 1979, Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products, FEMS Microbiol Lett. 5: 357–364.

    Google Scholar 

  • Mino T., Kawagami T., and Matsuo, T., 1985, Location of phosphorus in activated sludge and function of intracellular polyphosphates in biological phosphorus removal process, Water Sci. Technol 17: 93–106.

    Google Scholar 

  • Mino T., Arun V., Tsuzuki Y., and Matsuo, T., 1987, Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process, in: Biological Removal of Phosphate from Wastewaters (R. Ramadori, ed.), Pergamon Press, Oxford, England, pp. 27–38.

    Google Scholar 

  • Mostert E. S., Gerber A., and Riet van, C. J. J., 1989, A comparative study on the effects of feedstock composition on enhanced biological phosphate removal in modified activated sludge systems, Environ. Technol. Lett. 10: 9–22.

    Google Scholar 

  • Nakamura K., Masuda K., and Mikami, E., 1989, Polyphosphate-accumulating bacteria and their ecological characteristics in activated sludge process, in: Recent Advances in Microbial Ecology, Proceedings of the 5th International Symposium on Microbial Ecology, ISMES Japan Scientific Societies Press, Tokyo, Japan, pp. 427–431.

    Google Scholar 

  • Nakamura K., Masuda K., and Mikami, E., 1991, Isolation of a new type of polyphosphate accumulating bacterium and its phosphate removal characteristics, J. Ferment. Technol. 71: 258–263.

    Google Scholar 

  • Nakamura K., Hiraishi A., Yoshimi, Y, Kawaharasaki M., Masuda K., and Kamagata, Y, 1995a, Microlunatus phosphovorus gen. nov., sp. nov., a new Gram-positive polyphosphate-accumulating bacterium isolated from activated sludge, Int. J. Syst. Bacteriol 45: 17–24.

    Google Scholar 

  • Nakamura K., Ishikawa S., and Kawaharasaki, M., 1995b, Phosphate uptake and release activity in immobilized polyphosphate-accumulating bacterium Microlunatus phosphovorus strain NM-1, J. Ferment. Bioeng. 80: 377–382.

    Google Scholar 

  • Nicholls H. A., and Osborn, D. W., 1979, Bacterial stress: prerequisite for biological removal of phosphorus,/. Water Pollut. Control Fed. 51: 557–569.

    Google Scholar 

  • Nyren P., Nore, E, and Strid, A., 1991, Proton-pumping N,N1-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: Purification, characterization, and reconstitution, Biochemistry 30: 2883–2887.

    Google Scholar 

  • Pereira H., Lemos P. C., Reis, M. A. M., Crespo, P. S. G., Carrondo, M. J. T., and Santos, H., 1996, Model for carbon metabolism in biological phosphorous removal processes based on in vivo 13C-NMR labelling experiments, Water Res. 30: 2128–2138.

    Google Scholar 

  • Petersen B., Temmink H., Henze M., and Isaacs, S., 1998, Phosphate kinetics in relation to PHB under aerobic conditions, Water Res. 32: 91–100.

    Google Scholar 

  • Pick U., and Weiss, M., 1991, Polyphosphate hydrolysis within acidic vacuoles in response to amineinduced alkaline stress in the halotolerant alga Dunaliella salina, Plant Physiol. 97: 1234–1240.

    Google Scholar 

  • Rao N. N., and Kornberg, A., 1996, Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli, J. Bacteriol. 178: 1394–1400.

    Google Scholar 

  • Rao N. N., and Torriani, A., 1990, Molecular aspects of phosphate transport in Escherichia coli, Mol. Microbiol. 4: 1083–1090.

    Google Scholar 

  • Rensink, J.,H., and Donker, H. J. G. W., 1984, Biologische Phosphorelimination aus Abwasser, GwfWasser/Abwasser 125: 238–245.

    Google Scholar 

  • Rensink J. H., Donker, H. G. J. W., and Vries de, H. P., 1981, Biological P-removal in domestic wastewater by the activated sludge process, in: Proceedings of the 5th Environmental Sewage Symposium (S. H. Jenkins, ed.), Pergamin Press, Oxford, England, pp. 487–502.

    Google Scholar 

  • Rensink J. H., Donker, H. J. G. W., and Anink, D. M. E., 1988, Vergaande P-en N-verwijdering uit huishoudeljk afvalwater met terugwinning Van fosfaat, H2O 21: 240–242.

    Google Scholar 

  • Reusch, R. N., 1989, Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes, Proc. Soc. Exp. Biol. Med. 191: 377–381.

    Google Scholar 

  • Reusch R. N., and Sadoff, H. L., 1988, Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes, Proc. Natl. Acad. Sci. USA 85: 4176–4180.

    Google Scholar 

  • Rickard, L. R, and McClintock, S. A., 1992, Potassium and magnesium requirements for enhanced biological phosphorus removal from wastewater, Water Res. 26: 2203–2206.

    Google Scholar 

  • Rosenberg, H., 1987, Phosphate transport in prokaryotes, in: Ion Transport in Prokaryotes (B. P. Rosen and S. Silver, eds.), Academic Press, New York, pp. 205–248.

    Google Scholar 

  • Schün, G., Geywitz S., and Mertens, R, 1993, Influence of dissolved oxygen and oxidation-reduction potential on phosphate release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal, Water Res. 27: 349–354.

    Google Scholar 

  • Schulthess Von R., Wild D., and Gujer, W., 1994, Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentrations, Water Sci. Technol. 30: 123–132.

    Google Scholar 

  • Shin H. S., Jun H. B., and Park, H. S., 1992, Simultaneous removal of phosphorus and nitrogen in sequencing batch reactors, Biodegradation 3: 105–111.

    Google Scholar 

  • Shoda M., Ohsumi T., and Udake, S., 1980, Screening for high phosphate accumulating bacteria, Agric. Biol. Chem. 44: 319–324.

    Google Scholar 

  • Siegele D. A., and Kolter, R., 1992, Life after log, J. Bacteriol 174: 345–348.

    Google Scholar 

  • Skorko, R., 1989, Polyphosphate as a source of phosphoryl group in protein modification in the archaebacterium Sulfolobus acidocaldarius, Biochemie 71: 1089–1093.

    Google Scholar 

  • Smolders, G. J. R, 1995, A metabolic model of the biological phosphorus removal-stoichiometry, kinetics and dynamic behaviour, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Smolders, G. J. R, Mey Van der J., Loosdrecht van, M. C. M., and Heijnen, J. J., 1994, Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence, Biotechnol. Bioeng. 43: 461–470.

    Google Scholar 

  • Srinath E. G., Sastry C. A., and Pillai, S. C, 1959, Rapid removal of phosphorus from sewage by activated sludge, Water Waste Treat. 11: 410–415.

    Google Scholar 

  • Stante L., Cellamare C. M., Malaspina, R, Bortone G., and Tilche, A., 1997, Biological phosphorus removal by pure culture of Lampropedia spp., Water Res. 31: 1317–1324.

    Google Scholar 

  • Stephenson, T, 1987’, Acinetobacter: Its role in in biological phosphate removal, in: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), Pergamon Press, Oxford, England, pp. 313–316.

    Google Scholar 

  • Streichan M., Golecki J. R., and Schün, G., 1990, Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal, FEMS Microbiol. Ecol. 73: 113–124.

    Google Scholar 

  • Streichan M., and Schün, G., 1991, Polyphosphatspeichernde Bakterien: Phosphataufname, Phosphatrücklüsung und Energiestoffwechsel Von Acinetobacter-Stämmen, Gwf-Wass./Abwass. 132: 301–308.

    Google Scholar 

  • Suresh N., Warburg R., Timmerman M., Wells J., Coccia, M, Roberts, M. R, and Halvorson, H. O., 1985, New strategies for the isolation of microorganisms responsible for phosphate accumulation, Water Sci. Technol. 17: 99–111.

    Google Scholar 

  • T’Seyen J., Malnou D., Block J. C., and Faup, G., 1985, Polyphosphate kinase activity during phosphate uptake by bacteria, Water Sci. Technol. 17: 43–56.

    Google Scholar 

  • Toerien D. P., Gerber A., Lütter L. H., and Cloete, T. E., 1990, Enhanced biological phosphorus removal in activated sludge systems, in: Advances in Microbial Ecology (K. C. Marshall, ed.), vol. 11, Plenum Press, New York, pp. 173–230.

    Google Scholar 

  • Ubukata Y., and Takii, S., 1994, Induction ability of excess phosphate accumulation for phosphate removing bacteria, Water Res. 28: 247–249.

    Google Scholar 

  • van Groenestijn, J. W., 1988, Accumulation and degradation of polyphosphate in Acinetobacter spp., Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • van Groenestijn J. W., Deinema M. H., and Zehnder, A. J. B., 1987, ATP production from polyphosphate in Acinetobacter strain 210A, Arch. Microbiol. 148: 14–19.

    Google Scholar 

  • van Groenestijn J. W., Bentvelzen, M. M. A., Deinema M. H., and Zehnder, A. J. B., 1989, Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge, Appl. Environ. Microbiol. 55: 219–223.

    Google Scholar 

  • van Niel, E. W. J., Appeldoorn K. J., Zehnder, A. J. B., and Kortstee, G. J. J., 1998, Inhibition of anaerobic phosphate release by nitric oxide in activated sludge, Appl. Environ. Microbiol. 64: 2925–2930.

    Google Scholar 

  • van Niel, E. W. J., de Best J. H., Kets, E. P. W., Bonting, C. F. C., and Kortstee, G. J. J., 1999, Polyphosphate formation by Acinetobacter johnsonii 210A: Effect of cellular energy status and phosphatespecific transport system, Appl. Microbiol. Biotechnol. 51: 639–646.

    Google Scholar 

  • van Veen, H. W., 1994, Energetics and mechanisms of phosphate transport in Acinetobacter johnsonii, Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1993a, Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A, J. Biol. Chem. 268: 19377–19383.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1993b, Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A, J. Bacteriol. 175: 200–206.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Pereira H., Konings W. N., and Zehnder, A. J. B., 1994a, Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphateaccumulating Acinetobacter johnsonii strain 210A, J. Biol. Chem. 269: 29509–29514.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1994b, Substrate specificity of the two transport systems of Acinetobacter johnsonii 210A in relation to Pi speciation in its aquatic environment, J. Biol. Chem. 269: 16212–16216.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1994c, Translocation of metal phosphate via the phosphate inorganic tranport system of Escherichia coli, Biochemistry 33:1766–1770.

    Google Scholar 

  • van Veen H. W., Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1994d, Phosphate inorganic transport (Pit) system in Escherichia coli and Acinetobacter johnsonii 210A, in: Phosphate in Microorganisms: Cellular and Molecular Biology (A. M. Torriani-Gorini, S. Silver, and Y. Yagil, eds.), American Society for Microbiology, Washington, DC, pp. 43–49.

    Google Scholar 

  • van Veen, H. W, Abee, T, Kortstee, G. J. J., Konings W. N., and Zehnder, A. J. B., 1994e, Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accu-mulating Acinetobacter johnsonii 210A, J. Bacteriol. 176: 2670–2676.

    Google Scholar 

  • Voelz H., Voelz U., and Ortigoza, R. O., 1966, The “polyphosphate overplus” phenomenon in Myxococcus xanthus and its influence on the architecture of the cell, Arch. Microbiol. 53: 371–388.

    Google Scholar 

  • Vries de, H. P., and Rensink, J. H., 1985, Biological phosphorus removal at low sludge loadings by partial stripping, in: Proceedings of the International Conference on Management Strategies for Phosphorus in the Environment, Seeper Ltd., London, pp. 54–65.

    Google Scholar 

  • Wagner M., Erhart R., Manz, W, Amann R., Lemmer H., Wedi D., and Schleiffer, K.-L., 1994, Development of rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol. 56: 1919–1925.

    Google Scholar 

  • Wentzel, M. C, Lotter L. H., Loewenthal R. E., and Marais, G. v. R., 1986, Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal, Water South Afr. 12: 209–224.

    Google Scholar 

  • Wentzel, M. C, Dold P. L., Loewenthal G., Ekama G. A., and Marais, G. v. R., 1987, Experiments towards establishing the kinetics of biological excess phosphorus removal, in: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), Pergamon Press, Oxford, England, pp. 79–97.

    Google Scholar 

  • Wentzel M. C., Loewenthal R. E., Ekama G. A., and Marais, G. v. R., 1988, Enhanced polyphosphate organism cultures in activated sludge systems. Part 1: Enhanced culture development, Water South Afr. 14: 81–92.

    Google Scholar 

  • Wentzel M. C., Ekama G. A., Loewenthal R. E., Dold P. L., and Marais, G. v. R., 1989, Enhanced polyphosphate organism cultures in activated sludge systems. Part 2: Experimental behaviour, Water South Afr. 15: 71–88.

    Google Scholar 

  • Wood H. G., and Clark, J. E., 1988, Biological aspects of inorganic polyphosphates, Annu. Rev. Biochem. 57: 235–260.

    Google Scholar 

  • Zehnder, A. J. B., and van Groenestijn, J. W, 1990, Accumulation of polyphosphate by Acinetobacter sp.: Physiology, ecology, and application, in: Novel Biodegradable Microbial Polymers (E. A. Dawes, ed.), Kluwer Academic Publishers, Dordrecht, pp. 235–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kortstee, G.J.J., Appeldoorn, K.J., Bonting, C.F.C., van Niel, E.W.J., Van Veen, H.J. (2000). Ecological Aspects of Biological Phosphorus Removal in Activated Sludge Systems. In: Schink, B. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4187-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4187-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6878-6

  • Online ISBN: 978-1-4615-4187-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics