Skip to main content

Heterotrophic, Planktonic Bacteria and Cycling of Phosphorus

Phosphorus Requirements, Competitive Ability, and Food Web Interactions

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 16))

Abstract

As early as 1956, Rigler reported that heterotrophic bacteria were responsible for a large share of the uptake of inorganic phosphorus (P) in Toussant Lake (Rigler, 1956). Tracer experiments revealed that the bacteria sequestered two thirds of the phosphate, and Rigler stated that

if they [bacteria] take up small increments of phosphorus received from inflowing water or from marginal vegetation, [bacteria] may compete with algae for this essential element.… If, in this process, they utilize inorganic phosphate, they would reduce the amount of phosphate available to algae and thus reduce the amount of organic matter produced by algae, (p. 560)

I would rather discover a causal relationship than become King of Persia —Democritus (460?–357? BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman J. W., and Azam F., 1991, Bacterial 5’-nucleotidease activity in estuarine and coastal marine waters: Characterization of enzyme activity, Limnol. Oceanogr. 36:1427–1436.

    Google Scholar 

  • Andersen, O. K.., Goldman, J. C, Caron D. A., and Dennett, M. R., 1986, Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics, Mar. Ecol. Prog. Ser. 31:47–55.

    Google Scholar 

  • Andersen, T., 1997, Pelagic nutrient cycles: Herbivores as sources and sinks (Ecological Studies Vol. 129). Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Andersen, T., and Hessen, D. O., 1991, Carbon, nitrogen and phosphorus content of freshwater zoo-plankton, Limnol. Oceanogr. 36:807–814.

    Google Scholar 

  • Andersson, G., Berggren, H., Cronberg, G., and Gelin, C, 1978, Effects of planktivorous fish on organisms and water chemistry in eutrophic lakes, Hydrobiol. 59:9–15.

    Google Scholar 

  • Andersen, T., Schartau, A. K. L., and Paasche, E., 1991, Quantifying external and internal nitrogen and phosphorus pools, as well as nitrogen and phosphorus supplied through remineralization, in coastal marine plankton by means of a dilution technique, Mar. Ecol. Prog. Ser. 69:67–80.

    Google Scholar 

  • Andrews, J. A., and Harris, R. F., 1986, r- and K-selection and microbial ecology, Adv. Microb. Ecol. 9:99–147.

    Google Scholar 

  • Azam, F, Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F, 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.

    Google Scholar 

  • Baines, S. B., and Pace, M. L., 1991, The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater ecosystems, Limnol. Oceanogr. 36:1078–1090.

    Google Scholar 

  • Bell, R. T., and Kuparinen, J., 1984, Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Appl. Environ. Microbiol. 48:1221–1230.

    Google Scholar 

  • Benndorf, J., 1987, Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z Hydrobiol. 49:238–248.

    Google Scholar 

  • Bergh, Ø., Børsheim, K. Y., Bratbak, G., and Heldal, M., 1989, High abundance of virus found in aquatic environments, Nature 340:467–468.

    Google Scholar 

  • Berman, T., 1985, Uptake of [32P]orthophosphate by algae and bacteria in Lake Kinneret, J. Plankton Res. 7:71–84.

    Google Scholar 

  • Billen G., Servais P., and Fontigny, A., 1988, Growth and mortality in bacterial population dynamics of aquatic environments, Ergeb. Limnol. 31:173–183.

    Google Scholar 

  • Bird, B. F, and Kalff, J., 1987, Bacterial grazing by planktonic lake algae, Science 231:493–495.

    Google Scholar 

  • Bjørnsen, P., 1986, Bacterioplankton growth yield in continuous seawater cultures, Mar. Ecol. Prog. Ser. 30:191–196.

    Google Scholar 

  • Bloem, J., Starink, M., Bär-Gilissen, M.-J. B., and Cappenberg, T. E., 1988, Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures, Appl. Environ. Microbiol. 54:3113–3121.

    Google Scholar 

  • Børsheim, K. Y., 1984, Clearance rate of bacterial-sized particles by freshwater ciliates, measured with monodisperse, fluorescent latex beads, Oecologia 63:286–288.

    Google Scholar 

  • Børsheim, K. Y., and Myklestad, S., 1997, Dynamics of DOC in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66 degrees N, 2 degrees E, Deep-Sea Res. 44:593–601.

    Google Scholar 

  • Børsheim, K. Y, and Olsen, Y, 1984, Grazing activities by Daphnia pulex on natural populations of bacteria and algae, Verh. Internat. Verein. Limnol. 22:644–648.

    Google Scholar 

  • Bratbak, G., 1985, Bacterial biovolume and biomass estimation, Appl. Environ. Microbiol. 49:1488–1493.

    Google Scholar 

  • Bratbak, G., Thingstad, E, and Heldal, M., 1994, Viruses and the microbial loop, Microb. Ecol. 28:209–221

    Google Scholar 

  • Brendelberger, H., and Geller, W., 1985, Variability of filter structure in eight Daphnia species: Mesh sizes and filtering areas, J. Plankton Res. 7:473–486.

    Google Scholar 

  • Carlson, C. A., Ducklow, H. W., and Michaels, A. E, 1994, Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Saragasso Sea, Nature 371:405–408.

    Google Scholar 

  • Caron, D. A., and Goldman, J. C., 1990, Protozoa nutrient generation, in: Ecology of Marine Protozoa (G. M. Capriulo, ed.), Oxford University Press, New York, pp. 283–306.

    Google Scholar 

  • Cembella, A. D., Antia, N. J., and Harrison, P. J., 1984, The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1, CRC Crit. Rev. Microbiol 10:317–391.

    Google Scholar 

  • Chen, M., 1974, Kinetics of phosphorus absorption by Corynebacterium bovis, Microb. Ecol. 1:164–175.

    Google Scholar 

  • Chrzanowski, T. H., Sterner, R. W., and Elser, J. J., 1995, Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth, Microb. Ecol. 29:221–230.

    Google Scholar 

  • Cole, J. J., Findley, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser. 43:1–10.

    Google Scholar 

  • Coleman, J. E., 1987, Structure and function of alkaline phosphatase. Introduction, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds), American Society for Microbiology, Washington, DC, pp. 113–114.

    Google Scholar 

  • Copin-Montégut, G., and Avril, B., 1993, Vertical-distribution and temporal variation of dissolved organic-carbon in the north-western mediterranean-sea, Deep-Sea Res. 40:1963–1972.

    Google Scholar 

  • Coveney, M. E, and Wetzel, R. G., 1992, Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures, Appl. Environ. Microbiol. 58:150–156.

    Google Scholar 

  • Currie, D. J., 1990, Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus, Limnol. Oceanogr. 35:1437–1455.

    Google Scholar 

  • Currie, D. J., and Kalff, J., 1984a, The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater, Limnol. Oceanogr. 29:311–321.

    Google Scholar 

  • Currie, D. J., and Kalff, J., 1984b, A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus, Limnol. Oceanogr. 29:298–310.

    Google Scholar 

  • Currie, D. J., and Kalff, J., 1984c, Can bacteria outcompete phytoplankton for phosphorus? A chemostat test, Microb. Ecol. 10:205–216.

    Google Scholar 

  • Dicks, J. W, and Tempest, D. W., 1966, The influence of temperature and growth rate on the quantitative relationship between potassium, magnesium, phosphorus and ribonucleic acid of Aerobacter aerogenes growing in a chemostat, J. Gen. Microbiol. 45:547–557.

    Google Scholar 

  • Droop, M. R., 1968, Vitamin B12 and marine ecology IV The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. U.K. 48:689–733.

    Google Scholar 

  • Droop, M. R., 1983, 25 years of algal growth kinetics. A personal view, Botan. Marina 26:99–112.

    Google Scholar 

  • Duarte, C. M., 1992, Nutrient concentration of aquatic plants: Patterns across species, Limnol Oceanogr. 37:882–889

    Google Scholar 

  • Ducklow, H. W., and Carlson, C. A., 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12:113–181.

    Google Scholar 

  • Egli, T., 1995, The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates, Adv. Microb. Ecol. 14:305–386

    Google Scholar 

  • Elser, J. J., Stabler, L. B., and Hassett, R. P., 1995, Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study, Aquat. Microb. Ecol. 9:105–110.

    Google Scholar 

  • Fenchel, T., 1982, Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar. Ecol. Prog. Ser. 8:225–231.

    Google Scholar 

  • Fenchel, T., 1984, Suspended marine bacteria as food source, in: Flows of Energy and Materials in Marine Ecosystems (M. J. R. Fasham, ed.), Plenum Press, New York, pp. 301–315.

    Google Scholar 

  • Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling, Academic Press, New York

    Google Scholar 

  • Ferrante, J. G., 1976, The characterization of phosphorus excretion products of a natural population of limnetic sooplankton, Hydrobiologia 50:11–15.

    Google Scholar 

  • Fuhrman, J. A., and Azam, F, 1982, Thymidine incorporation as a measure of heterotrophic bacterio-plankton in marine surface waters: Evaluation and field results, Mar. Biol. 66:109–120.

    Google Scholar 

  • Fuhs, G. W., Demerle, S. D., Canelli, E., and Chen, M., 1972, Characterization of phosphorus-limited algae, Am. Soc. Limnol. Oceanogr. Spec. Publ. 1:113–132.

    Google Scholar 

  • Garber, J. H., 1984, Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston, Estuarine Coastal Shelf Sci. 18:685–702.

    Google Scholar 

  • Gotham, I. J., and Rhee, G-. Y., 1981, Comparative kinetic study of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture, J. Phycol. 17:257–265.

    Google Scholar 

  • Grenney, W. J., Bella, D. A., and Curl, H. C, 1973, A theoretical approach to interspecific competition in phytoplankton communities, Am. Nat. 107:405–425.

    Google Scholar 

  • Güde, H., 1985, Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems, Microb. Ecol. 11:193–204.

    Google Scholar 

  • Güde, H., 1989, The role of grazing on bacteria in plankton succession, in: Plankton Ecology: Succession in Plankton Communities (U. Sommer, ed.), Springer, Berlin, pp. 337–364.

    Google Scholar 

  • Güde, H., 1991, Participation of bacterioplankton in epilimnetic phosphorus cycles of Lake Constance, Verh. Int. Ver. Limnol. 24:816–820.

    Google Scholar 

  • Hagström, Å., Larsson, U., Hörstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol. 37:805–812.

    Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30:772–794.

    Google Scholar 

  • Healey, F. P., 1975, Physiological indicators of nutrient deficiency in algae, Environment Canada, Fisheries and Marine Service, Technicaly Report no. 585.

    Google Scholar 

  • Healey, F. P., 1980, Slope of the Monod equation as an indicator of advantage in nutrient competition, Microb. Ecol. 5:281–286.

    Google Scholar 

  • Heckey R. E., and Kilham, P, 1988, Nutrient limitation of the phytoplankton in freshwater and marine environments: A review of recent evidence on the effect of enrichment, Limnol. Oceanogr. 33:796–822.

    Google Scholar 

  • Heldal, M., and Bratbak, G., 1991, Production and decay of viruses in aquatic environments, Mar. Ecol. Prog. Ser. 72:205–212.

    Google Scholar 

  • Heldal, M., Norland, S., and Tumyr, O., 1985, X-ray Microanalytic method for measurement of dry matter and elemental content of individual bacteria, Appl. Environ. Microbiol. 50:1251–1257.

    Google Scholar 

  • Herbert, D., 1961, The chemical composition of microorganisms as a function of their environment, Symp. Soc. Gen. Microbiol. 11:391–416.

    Google Scholar 

  • Hessen, D. O., 1985a, Filtering structure and particle size selection in coexisting cladocera, Oecologia 66:368–372.

    Google Scholar 

  • Hessen, D. O., 1985b, The relation between bacterial carbon and dissolved humic compounds in oligotrophy lakes, FEMS Microb. Ecol. 31:215–223.

    Google Scholar 

  • Hessen, D. O., and Andersen, T., 1990, Bacteria as a source of phosphorus for zooplankton, Hydrobiologia 206:217–223.

    Google Scholar 

  • Hessen, D. O., Andersen, T., and Lyche, A., 1990, Carbon metabolism in a humic lake; pool sizes and cycling through zooplankton, Limnol. Oceanogr. 35:84–99.

    Google Scholar 

  • Hessen, D. O., Faafeng, B., and Andersen, T., 1992. Zooplankton contribution to particulate phosphorus and nitrogen in lakes, J. Plankton Res. 14:937–947.

    Google Scholar 

  • Hobbie, J. E., 1988, A comparison of the ecology of planktonic bacteria in fresh and salt water, Limnol. Oceanogr. 33:750–764.

    Google Scholar 

  • Hobbie, J. E., Daly, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33:1225–1228.

    Google Scholar 

  • Hutchinson, G. E., 1961, The paradox of the plankton, Am. Nat. 95:137–145.

    Google Scholar 

  • Jansson, M., 1988, Phosphate uptake and utilization by bacteria and algae, Hydrobiologia 170:177–189.

    Google Scholar 

  • Jansson, M., 1993, Uptake, exchange, and excretion of orthophosphate in phosphate-starved Scenedesmus quadricauda and Pseudomonas K7, Limnol. Oceanogr. 38:1162–1178.

    Google Scholar 

  • Jansson, M., Blomqvist, P., Jonsson, A., and Bergström, A.-K., 1996, Nutrient limitation of bacterio-plankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket, Limnol. Oceanogr. 41:1552–1559.

    Google Scholar 

  • Johannes, R. E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr. 10:434–442.

    Google Scholar 

  • Johannes, R. E., 1968, Nutrient regeneration in lakes and oceans. Adv. Microbiol. Sea 1:203–313.

    Google Scholar 

  • Jonsson, P. R., 1986, Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora, Oligotrichina), Mar. Ecol. Prog. Ser. 33:265–277.

    Google Scholar 

  • Jürgens, K., and Güde, H., 1990, Incorporation and release of phosphorus by planktonic bacteria and phagotrophic flagellates, Mar. Ecol. Prog. Ser. 59:271–284.

    Google Scholar 

  • Kivi, K., Kaitala, S., Kuosa, H., Kuparinen, J., Leskinen, E., Lignell, R., Marcussen, B., and Tamminen, T, 1993, Nutrient limitation and grazing control of the Baltic plankton community during annual succession, Limnol. Oceanogr. 38:893–905.

    Google Scholar 

  • Kjeldgaard, N. O., and Kurland, C. G., 1963, The distribution of soluble and ribosomal RNA as a function of growth rate, J. Mol. Biol. 6:341–348.

    Google Scholar 

  • Korstad, J., 1983, Nutrient regeneration by zooplankton in southern Lake Huron, J. Great Lakes Res. 9:374–388.

    Google Scholar 

  • Koschel, R., 1980, Untersuchung zur Phosphateaffinität des planktons in der euphotischen Zone Von Seen, Limnologica (Berlin) 12:141–145.

    Google Scholar 

  • Kuenzler, E. J., and Ketchum, B. H., 1962, Rate of phosphorus uptake by Phaeodactylum tricornutum, Biol. Bull. Mar. Biol. Lab., Woods Hole 123:134–145.

    Google Scholar 

  • Kuparinen, J., and Heinänen, A., 1993, Inorganic nutrients and carbon controlled bacterioplankton growth in the Baltic sea, Estuarine, Coastal and Shelf Sci. 37:271–285.

    Google Scholar 

  • Lampert, W., 1978, Release of dissolved organic carbon by grazing zooplankton, Limnol. Oceanogr. 23:831–834.

    Google Scholar 

  • Lean, D. R. S., 1973a, Movement of phosphorus between its biologically important forms in lake water, J. Fish. Res. Board Can. 30:1525–1536.

    Google Scholar 

  • Lean, D. R. S., 1973b, Phosphorus dynamics in lake water, Science 179:678–680.

    Google Scholar 

  • Lean, D. R. S., 1984, Metabolic indicators for phosphorus limitation, Verh. Internat. Verein. Limnol. 22:211–218.

    Google Scholar 

  • Lean, D. R. S., and Nalewajko, C., 1976, Phosphate exchange and organic phosphorus excretion by freshwater algae, J. Fish. Res. Bd. Can. 33:1312–1323.

    Google Scholar 

  • Lee S., and Fuhrman, J. A., 1987, Relationship between biovolume and biomass of natural derived marine bacterioplankton, Appl. Environ. Microbiol. 53:1298–1303.

    Google Scholar 

  • Lehman, J. T., 1980, Release and cycling of nutrients between planktonic algae and herbivores, Limnol. Oceanogr. 25:620–632.

    Google Scholar 

  • Lugtenberg, B., 1987, The pho regulon in Escherichia coli, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), American Society for Microbiology, Washington, DC, pp. 1–2.

    Google Scholar 

  • Martinussen I., and Thingstad, T. E, 1987, Utilization of N, P and organic C by heterotrophic bacteria. II. A comparison of experiments and a mathematical model, Mar. Ecol Prog. Sen 37:285–293.

    Google Scholar 

  • Middelboe M., and Søndergaard, M., 1993, Bacterial growth yield: Seasonal variations and coupling to substrate lability and ß-glucosidase activity, Appl. Environ. Microbiol. 59:3916–3921.

    Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bactériennes, Herman, Paris.

    Google Scholar 

  • Morel, E M. M., 1987, Kinetics of nutrient upt ake and growth in phytoplankton, J. Phycol. 23:137–150.

    Google Scholar 

  • Morris D. P., and Lewis Jr., W. M., 1992, Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado, Limnol. Oceanogr. 37:1179–1192.

    Google Scholar 

  • Neidhardt, E C, and Magasanik, B., 1960, Studies on the role of ribonucleic acid in the growth of bacteria, Biochim. Biophys. Acta 42:99–116.

    Google Scholar 

  • Neidhardt, F.C., Ingraham, J. L., and Schaechter, M., 1990, Physiology of the Bacterial Cell. A molecular approach, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Neijssel, O. M., and Tempest, D. W, 1976, Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture, Arch. Microbiol. 107:215–221.

    Google Scholar 

  • Nielsen, M. V., and Olsen, Y., 1989, The dependence of the assimilation efficiency in Daphnia magna on the 14C-labelling period of the food algae Scenedesmus acutus, Limnol. Oceanogr. 34:1311–1315.

    Google Scholar 

  • Nissen, H., Heldal, M., and Norland, S., 1987, Effect of phosphate on growth response and elemental composition of Vibrio natriegens, Can. J. Microbiol. 33:583–588.

    Google Scholar 

  • Nordland, S., Heldal, M., and Tumyr, O., 1987, On the relation between dry matter and volume of bacteria, Microb. Ecol. 13:95–101.

    Google Scholar 

  • Nygaard, K., and Tobiesen, A., 1993, Bacterivory in algae: A survival strategy during nutrient limitation, Limnol. Oceanogr. 38:273–279.

    Google Scholar 

  • Olsen, Y, 1988, Phosphate kinetics and competitive ability of planktonic blooming cyanobacteria under variable phosphate supply, Dr. Techn. thesis, University of Trondheim, Trondheim, Norway.

    Google Scholar 

  • Olsen, Y, 1989, Evaluation of competitive ability of Staurastrum luetkemuellerii (Chlorophyceae) and Microcystis aeruginosa (Cyanophyceae) under P limitation, J. Phycol. 25:486–499.

    Google Scholar 

  • Olsen, Y, and Østgaard, K., 1985, Estimating release rates of phosphorus from zooplankton: Model and experimental verification, Limnol. Oceanogr. 30:844–852.

    Google Scholar 

  • Olsen, Y, and Vadstein, O., eds., 1989, NTNFs Research Program on Eutrophication, Final Report for Phase 1-3, 1978-1988, [In Norwegian] Tapir, Trondheim, Norway

    Google Scholar 

  • Olsen, Y, Jensen, A., Reinertsen, H., Børsheim, Y, Heldal, M., and Langeland, A., 1986a, Dependence of the rate of release of phosphorus by zooplankton upon the P:C ratio in the food supply, as calculated by a recycling model, Limnol. Oceanogr. 31:34–44.

    Google Scholar 

  • Olsen, Y, Vårum, K. M., and Jensen, A., 1986b, Some characteristics of the carbon compounds released by Daphnia, J. Plankton Res. 8:505–517.

    Google Scholar 

  • Olsen, Y, Vadstein, O., Jensen, A., and Andersen, T., 1989, Competition between Staurastrum luetkemullerii (chlorophycae) and Microcystis aeruginosa (cyanophycae) under varying modes of phosphate supply, J. Phycol 25:499–508.

    Google Scholar 

  • Pace, M. L., and Funke, E., 1991, Regulation of planktonic microbial communities by nutrients and herbivores, Ecology 72:904–914.

    Google Scholar 

  • Pearl, H. W, and Lean, D. R. S., 1976, Visual observation of phosphorus movement between algae, bacteria and abiotic particles in lake waters, J. Fish. Res. Board Can. 33:2805–2813.

    Google Scholar 

  • Pengerud, B., Skjoldal, E. F., and Thingstad, T. F., 1987, The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacterivorous nanoflagellates, Mar. Ecol. Prog. Sen 35:111–117.

    Google Scholar 

  • Peters, R., and Lean, D., 1973, The characterization of soluble phosphorus released by limnetic zoo-plankton, Limnol. Oceanogr. 18:270–279.

    Google Scholar 

  • Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 133:300–302.

    Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy. Fast and famine existence, Adv. Microb. Ecol. 5:63–89.

    Google Scholar 

  • Reiners, W. A., 1986, Complementary models for ecosystems, Am. Nat. 127:59–73.

    Google Scholar 

  • Reinertsen, H., and Langeland, A., 1982, The effect of a lake fertilization on the stability and material utilization of a limnetic ecosystem, Holarctic Ecol. 5:311–324.

    Google Scholar 

  • Reinertsen, H., Koksvik, D., Langeland, A., and Olsen, Y., 1989, Effects of fish removal on the limnetic ecosystem in a eutrophic lake, Can. J. Fish. Aquat. Sci. 47:166–173.

    Google Scholar 

  • Rhee, G-Y., 1972, Competition between an alga and an aquatic bacterium for phosphate, Limnol. Oceanogr. 17:505–514.

    Google Scholar 

  • Rhee, G-Y, 1978, Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake, Limnol. Oceanogr. 23:10–25.

    Google Scholar 

  • Rhee, G-Y, 1982, Effects of environmental factors and their interactions on phytoplankton growth, Adv. Microb. Ecol. 6:33–74.

    Google Scholar 

  • Riemann, B., 1985, Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria, Appl. Environ. Microbiol. 50:187–193.

    Google Scholar 

  • Riemann, B., and Søndergaard, M., eds., 1986, Carbon Dynamics in Eutrophic, Temperate Lakes, Elsevier, New York

    Google Scholar 

  • Rigler, F. H., 1956, A tracer study of the phosphorus cycle in lake water, Ecology 37:550–562.

    Google Scholar 

  • Rigler, F H., 1973, A dynamic view of the phosphorus cycle in lakes, in: Environmental phosphorus handbook E E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell, (eds.), John Wiley&Sons, New York, pp. 539–572.

    Google Scholar 

  • Robertson, B. R., and Button, D. K., 1979, Phosphate-limited culture of Rhodotorula rubra: Kinetics of transport, leakage, and growth, J. Bacteriol. 138:884–895.

    Google Scholar 

  • Robinson, J. D., Mann, K. H., and Novitsky, J. A., 1982, Conversion of the particulate fraction of seaweed detritus to bacterial biomass, Limnol. Oceanogr. 27:1072–1079.

    Google Scholar 

  • Rosenberg, H., 1987, S. Silver, ed., Academic Press, London}, pp. 205–24

    Google Scholar 

  • Rosenberg, H., Gerdes, R. G., and Chegwidden, K., 1977, Two systems for the uptake of phosphate in Escherichia coli, J. Bacteriol. 131:505–511.

    Google Scholar 

  • Rosenberg H., Russel L. M., Jacomb P. A., and Chegwidden, K., 1982, Phosphate exchange in the Pit transport system in Escherichia coli, J. Bacteriol. 149:123–13

    Google Scholar 

  • Rosset R., Mien J., and Monier, R., 1966, Ribonucleic acid composition of bacteria as a function of growth rate, J. Mol. Biol. 18:308–320.

    Google Scholar 

  • Rothhaupt, K. O., 1992, Stimulation of phosphorus-limited phytoplankton by bacterivorous flagellates in laboratory experiments, Limnol. Oceanogr. 37:750–759.

    Google Scholar 

  • Rothhaupt K. O., and Güde, H., 1992, The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: Further evidence and possible causes, Limnol. Oceanogr. 37:739–749.

    Google Scholar 

  • Sakshaug E., and Olsen, Y, 1986, Nutrient status of phytoplankton blooms in Norwegian waters and algal strategies for nutrient competition, Can. J. Fish. Aquat. Sci. 43:389–396.

    Google Scholar 

  • Sakshaug E., Andresen K., Myklestad S., and Olsen, Y, 1983, Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition, j. Plankton Res. 5}:175–1

    Google Scholar 

  • Sanders R. W., and Porter, K., 1988, Phagotrophic phytoflagellates, Adv. Microb. Ecol. 10:167–192.

    Google Scholar 

  • Schwaerter S., Søndergaard M., Riemann B., and Jensen, L. M., 1988, Respiration in eutrophic lakes: The contribution of bacterioplankton and bacterial growth yield, J. Plankton Res. 10:515–531.

    Google Scholar 

  • Servais P., Billen G., and Rego, J. V., 1985, Rate of bacterial mortality in aquatic environments, Appl. Environ. Microbiol. 49:1448–1454.

    Google Scholar 

  • Sherr B. F., and Sherr, E. B., 1984, Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems, in: Current Perspectives in Microbial Ecology (edM. J. Klug and C. A. Reddy}, eds.), American Society for Microbiology, Washington, DC, pp. 412–423.

    Google Scholar 

  • Sherr, B. R, Sherr, E. B., and Berman, T., 1982, Decomposition of organic detritus: A selective role for microflagellated protozoa, Limnol. Oceanogr. 27:765–769.

    Google Scholar 

  • Sherr B. P., Sherr E. B., and Fallon, R. D., 1987, Use of monodispersed, fluorescently labelled bacteria to estimate in situ protozoan bacterivory, Appl. Environ. Microbiol. 53:958–965.

    Google Scholar 

  • Shuter, B. J., 1978, Size dependence of phosphorus and nitrogen subsistence quotas in unicellular organisms, Limnol. Oceanogr. 23:1248–1255.

    Google Scholar 

  • Simon M., and Azam, R, 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol Prog. Ser. 51:201–213.

    Google Scholar 

  • Simon M., Cho, B. C, and Azam, R, 1992, Significance of bacterial biomass in lakes and the ocean: Comparison to phytoplankton biomass and biogeochemical implications, Mar. Ecol. Prog. Ser. 86:103–110.

    Google Scholar 

  • Smith, R. E. H., and Kalff, J., 1982, Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton, J. Phycol. 18:275–284.

    Google Scholar 

  • Sommer, U., 1984, The paradox of the plankton: Fluctuations of the phosphorus availability maintain diversity of phytoplankton on flow-through cultures, Limnol. Oceanogr. 29:633–636.

    Google Scholar 

  • Sommer, U., 1985, Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton, Limnol. Oceanogr. 30:335–346.

    Google Scholar 

  • Strayer, D., 1988, On the limits to secondary production, Limnol. Oceanogr. 33:1217–1220.

    Google Scholar 

  • Tarapchak S. J., and Moll, R. A., 1990, Phosphorus sources for phytoplankton and bacteria in Lake Michigan, J. Plankton Res. 12:743–758.

    Google Scholar 

  • Taylor, W. D., 1984, Phosphorus flux through epilimnetic zooplankton from Lake Ontario: Relationship with body size and significance to phytoplankton, Can. J. Fish. Aquat. Sci. 41:1702–1712.

    Google Scholar 

  • Taylor W. D., and Lean, D. R. S., 1991, Phosphorus pool sizes and fluxes in the epilimnion of a mesotrophic lake, Can. J. Fish. Aquat. Sci. 48:1293–1301.

    Google Scholar 

  • Terry K. R., and Hooper, A. B., 1970, Polyphosphate and orthophosphate content of Nitrosomonas europaes as a function of growth, J. Bacteriol. 103}:199–2

    Google Scholar 

  • Tezuka, Y., 1989, The C:N:P ratio of phytoplankton determines the relative amounts of dissolved inorganic nitrogen and phosphorus released during aerobic decomposition, Hydrobiologia 173:55–63.

    Google Scholar 

  • Tezuka, Y., 1990, Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates, Microb. Ecol. 19:227–238.

    Google Scholar 

  • Thingstad, T. F, 1987, Analyzing the “microbial loop. ” Experimental and mathematical model studies of interactions between heterotrophic bacteria and their trophic neighbours in the pelagic food webs. Ph.D. thesis, University of Bergen, Berger, Norway.

    Google Scholar 

  • Thingstad T. F., and Pengerud, B., 1985, Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory, Mar. Ecol. Prog. Ser. 21:47–62.

    Google Scholar 

  • Thingstad, T. F, Havskum, H., Garde K., and Riemann, B., 1996, On the strategy of “eating your competitor ”: A mathematical analysis of algal mixotrophy, Ecology 77:2108–2118.

    Google Scholar 

  • Thingstad, T. F, Hagström, Å., and Rassoulzadegan, P., 1997, Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop? Limnol. Oceanogr. 42:398–404.

    Google Scholar 

  • Thomas, E. A., 1973, Phosphorus and eutrophication, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, and D. T. Mitchell, eds.), John Wiley&Sons, New York, pp. 585–611.

    Google Scholar 

  • Tilman, D., 1977, Resource competition between planktonic algae: An experimental and theoretical approach, Ecology 58:338–348.

    Google Scholar 

  • Tilman, D., Kilham, S. S., and Kilham, P., 1982, Phytoplankton community ecology: The role of limiting nutrients, Annu. Rev. Ecol. Syst. 13:348–372.

    Google Scholar 

  • Toolan, T., Wehr, J. E., and Findlay, S., 1991, Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake, Appl. Environ. Microbiol. 57:2074–2078.

    Google Scholar 

  • Torriani-Gorini, A., Rothman, F. G., Silver, S., Wright, A., and Yagil, E., eds., 1987, Phosphate Metabolism and Cellular Regulation in Microorganisms, American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Tsai, J. C, Aladegami, S. L., and Vela, G. R., 1979, Phosphate-limited culture of Azotobactervinilandii, J. Bacteriol. 139:639–64

    Google Scholar 

  • Vadstein, O., 1998, Evaluation of competitive ability of two heterotrophic planktonic bacteria under phosphorus limitation, Aquatic Microb. Ecol. 14:119–127.

    Google Scholar 

  • Vadstein, O., and Olsen, Y., 1989, Chemical composition and PO4 uptake kinetics of limnetic bacterial communities cultured in chemostat under P limitation, Limnol. Oceanogr. 34:939–946.

    Google Scholar 

  • Vadstein, O., Jensen, A., Olsen, Y, and Reinertsen, H., 1988, Growth and phosphorus status of limnetic phytoplankton and bacteria, Limnol. Oceanogr. 33:489–503.

    Google Scholar 

  • Vadstein, O., Harkjerr, B. O., Jensen, A., Olsen, Y, and Reinertsen, H., 1989, Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the bacteria, Limnol. Oceanogr. 34:840–855.

    Google Scholar 

  • Vadstein, O., Jensen, A., Olsen, Y, and Reinertsen, H., 1993, The role of planktonic bacteria in phosphorus cycling in lakes—Sink and link, Limnol. Oceanogr. 38:1539–1544.

    Google Scholar 

  • Vadstein, O., Brekke, O., Andersen, T., and Olsen, Y, 1995, Estimation of phosphorus release rates from natural zooplankton communities feeding on planktonic algae and bacteria, Limnol. Oceanogr. 40:250–262.

    Google Scholar 

  • Vollenweider, R. A., 1968, Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication, Technical Report DAS/CSI/68.27, Paris.

    Google Scholar 

  • Vollenweider, R. A., 1976, Advances in defining critical loading levels for phosphorus in lake eutrophication, Mem. Ist. Ital. Idrobiol. 33:53–83.

    Google Scholar 

  • Wang, L., Miller, T. D., and Priscu, J. C, 1992, Bacterioplankton nutrient deficiency in a eutrophic lake, Arch. Hydrobiol. 125:423–439.

    Google Scholar 

  • Wanlian, L., and Xinshou, L., 1985, Elementary composition of some dominant zooplankters in Lake Donghu, Wuhan, Acta Hydrobiol. Sinica 9:258–263.

    Google Scholar 

  • Wanner U. and Egli T 1990 Dynamics of microbial growth and cell composition in batch culture FEMS Microbiol. Rev. 7519–44

    Google Scholar 

  • Watson, S. W, Novitsky, T. J., Quinby, H. L., and Valois, F. W., 1977, Determination of bacterial number and biomass in the marine environment, Appl. Environ. Microbiol. 33:940–946.

    Google Scholar 

  • Wetzel, R. G., 1983, Limnology, 2nd ed., Saunders, Philadelphia.

    Google Scholar 

  • White, P. A., Kalff, J., Rasmussen, J. B., and Gasol, J. M., 1991, The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats, Microb. Ecol. 21:99–118.

    Google Scholar 

  • Wikner, J., Anderson, A., Normark, S., and Hagström, Å., 1986, Use of genetically marked minicells as a probe in measurements of predation on bacteria in aquatic environments, Appl. Environ. Microbiol. 52:4–8.

    Google Scholar 

  • Zimmermann, R., and Meyer-Reil, L.-A., 1974, A new method for fluorescence staining of bacterial populations on membrane filters, Kieler Meeresforschungen 30:24–27.

    Google Scholar 

  • Zweifel, U. L., Norrman, B., and Hagström, Å., 1993, Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients, Mar. Ecol. Prog. Sen 101:23–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vadstein, O. (2000). Heterotrophic, Planktonic Bacteria and Cycling of Phosphorus. In: Schink, B. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4187-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4187-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6878-6

  • Online ISBN: 978-1-4615-4187-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics