Skip to main content

Layered Functionalized Electrodes for Electrochemical Biosensor Applications

  • Chapter
Biosensors and Their Applications

Abstract

The application of redox enzymes as bioactive matrices for biosensor design is of substantial basic and practical importance.1-4 Two basic configurations for the use of enzymes in biosensor devices are outlined in Fig. 4.1. In Fig. 4.1 A, the biocatalyst generates a redox-active product that undergoes a redox transformation at the electrode interface and yields a current or a potential response. For example, biocatalyzed oxidation of substrates such as glucose or amino acids by molecular oxygen in the presence of glucose oxidase (GOx)5-8 or L-amino acid oxidase (AAOx),9 respectively, generates H2O2 as an electroactive product. The amperometric response due to the reduction of H2O2 is proportional to the substrate concentration.10 Potentiometric detection of enzymatically produced H2O2 was also used.11-12 Alternatively, the depletion of oxygen monitored at an oxygen-sensitive electrode represents a potential transduction of the substrate concentration.13 This approach was used to develop the first generation of electrochemical biosensors and the methodology has been extensively reviewed.14 The second approach to designing amperometric biosensors is shown in Fig. 4.1B. Electrocatalyzed oxidation (or reduction) of the enzyme redox center stimulates the oxidation (or reduction) of the substrate, and the resulting current is proportional to the substrate concentration. The development of such enzyme/electrode systems suffers from the basic limitation that redox enzymes usually lack direct electrical contact with electrode surfaces.15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmidt H-L, Schuhmann W. Reagentless oxidoreductase sensors. Biosens Bioelectron 1996;11:127–135.

    Article  CAS  Google Scholar 

  2. Bartlett PN. Applications of enzymes in amperometric sensors: problems and possibilities. In: Buck RP, Hatfield WE, Umaña M, Bowden EF, eds. Biosensor Technology: Fundamentals and Applications. New York: Marcel Dekker, 1990, Ch 7, pp 95–115.

    Google Scholar 

  3. Hill Hao, Sanghera GS. Mediated amperometric enzyme electrodes. In: Cass AEG, ed. Biosensors: A Practical Approach. Oxford: Oxford University Press, 1990, Ch 2, pp 19–46.

    Google Scholar 

  4. Katz E, Heleg-Shabtai V, Willner B, et al. Electrical contact of redox enzymes with electrodes: novel approaches for amperometric biosensors. Bioelectrochem Bioenerg 1997;42:95–104.

    Article  CAS  Google Scholar 

  5. Bourdillon C, Bourgeois JP, Thomas D. Chemically modified electrodes bearing grafted enzymes. Biotech Bioeng 1979;21:1877–1879.

    Article  CAS  Google Scholar 

  6. Bourdillon C, Bougeois JP, Thomas D. Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena. J Am Chem Soc 1980;102:4231–4235.

    Article  CAS  Google Scholar 

  7. Wieck HJ, Shea C, Yacynych AM. Reticulated vitreous carbon electrode materials chemically modified with immobilized enzyme. Anal Chim Acta 1982;142:277–279.

    Article  CAS  Google Scholar 

  8. Urban G, Jobst G, Kohl F, et al. Miniaturized thin-film biosensors using covalently immobilized glucose oxidase. Biosens Bioelectron 1991;6:555–562.

    Article  CAS  Google Scholar 

  9. Ianniello RM, Yacynych AM. Immobilized enzyme chemically modified electrode as an amperometric sensor. Anal Chem 1981;53:2090–2095.

    Article  CAS  Google Scholar 

  10. Clark LC Jr. The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode. In: Fleischer S, Packer L, eds. Methods in Enzymology. New York: Academic Press, 1979, vol 56, pp 448–479.

    Google Scholar 

  11. Ianniello RM, Yacynych AM. Chemically modified graphite electrode with immobilized enzyme as a potentiometric sensor for some L-amino acids. Anal Chim Acta 1981;131:123–132.

    Article  CAS  Google Scholar 

  12. Kumar SD, Kulkarni AV, Dhaneshwar RG, et al. Potentiometric studies at the glucose oxidase enzyme electrode. Bioelectrochem Bioenerg 1994;34:195–198.

    Article  CAS  Google Scholar 

  13. Clark Jr LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 1962;102:29–45.

    Article  PubMed  CAS  Google Scholar 

  14. Bardeletti G, Séchaud F, Coulet PR. Amperometric enzyme electrodes for substrate and enzyme activity determinations. In: Blum LJ, Coulet PR, eds. Biosensor Principles and Applications. New York: Marcel Dekker, 1991, Ch 2, pp 7–45.

    Google Scholar 

  15. Heller A. Electrical wiring of redox enzymes. Acc Chem Res 1990;23:128–134.

    Article  CAS  Google Scholar 

  16. Marcus RA, Sutin N. Electron transfer in chemistry and biology. Biochim Biophys Acta 1985;811:265–322.

    Article  CAS  Google Scholar 

  17. Dryhurst G, Kadish KM, Scheller F, et al. Biological Electrochemistry, Vol 1, New York: Academic Press, 1982:459.

    Google Scholar 

  18. Bartlett PN, Tebbutt P, Whitaker RG. Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Prog React Kinet 1991;16:55–155.

    CAS  Google Scholar 

  19. Bardea A, Katz E, Bückmann AF, et al. NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes. J Am Chem Soc 1997;119:9114–9119.

    Article  CAS  Google Scholar 

  20. Brunori M. Control of electron transfer in metalloproteins. Biosens Bioelectron 1994;9:633–636.

    Article  CAS  Google Scholar 

  21. Tarasevich MR. Way of using enzymes for acceleration of electrochemical reactions. Bioelectrochem Bioenerg 1979;6:587–597.

    Article  CAS  Google Scholar 

  22. Williams DL, Doig Jr AP, Korosi A. Electrochemical-enzymatic analysis of blood glucose and lactate. Anal Chem 1970;42:118–121.

    Article  PubMed  CAS  Google Scholar 

  23. Cass AEG, Davis G, Green MJ, et al. Ferricinium ion as an electron acceptor for oxido-reductases. J Electroanal Chem 1985;190:117–127.

    Article  CAS  Google Scholar 

  24. Ianniello RM, Lindsay TJ, Yacynych AM Immobilized xanthine oxidase chemically modified electrode as a dual analytical sensor. Anal Chem 1982;54:1980–1984.

    Article  CAS  Google Scholar 

  25. Zhang Y, Wilson GS. In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Anal Chim Acta 1993;281:513–520.

    Article  CAS  Google Scholar 

  26. Csöregi E, Quinn CP, Schmidtke DW, et al. Design, characterization and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Anal Chem 1994;66:3131–3138.

    Article  PubMed  Google Scholar 

  27. Degani Y, Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes: 1. Electron transfer from glucose oxidase to metal electrodes via electron relays bound covalently to the enzyme. J Phys Chem 1987;91:1285–1289.

    Article  CAS  Google Scholar 

  28. Degani Y, Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes: 2. Method for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. J Am Chem Soc 1988;110:2615–2620.

    Article  CAS  Google Scholar 

  29. Badia A, Carlini R, Fernandez A, et al. Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase. J Am Chem Soc 1993;115:7053–7060.

    Article  CAS  Google Scholar 

  30. Willner I, Katz E, Riklin A, et al. Mediated electron transfer in glutathione reductase organized in self-assembled monolayers on Au-electrodes. J Am Chem Soc 1992;114:10965–10966.

    Article  CAS  Google Scholar 

  31. Willner I, Lapidot N, Riklin A, et al. Electron transfer communication in glutathione reductase assemblies: Electrocatalytic, photocatalytic and catalytic systems for the reduction of oxidized glutathione. J Am Chem Soc 1994;116:1428–1441.

    Article  CAS  Google Scholar 

  32. Degani Y, Heller A. Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J Am Chem Soc 1989;111:2357–2358.

    Article  CAS  Google Scholar 

  33. Heller A. Electrical connection of enzyme redox centers to electrodes. J Phys Chem 1992;96:3579–3587.

    Article  CAS  Google Scholar 

  34. Willner I, Katz E, Lapidot N, et al. Bioelectrocatalysed reduction of nitrate utilizing polythiophene bipyridinium enzyme-electrodes. Bioelectrochem Bioenerg 1992;29:29–45.

    Article  CAS  Google Scholar 

  35. Cosnier S, Innocent C, Jouanneau Y. Amperometric detection of nitrate via a nitrate reductase immobilized and electrically wired at the electrode surface. Anal Chem 1994;66:3198–3201.

    Article  CAS  Google Scholar 

  36. Schuhmann W. Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers. Biosens Bioelectron 1995;10:181–193.

    Article  CAS  Google Scholar 

  37. Lin AWC, Yeh P, Yacynych AM, et al. Cyanuric chloride as a general linking agent for the attachment of redox groups to pyrolytic graphite and metal oxide electrodes. J Electroanal Chem 1997;84:411–419.

    Article  Google Scholar 

  38. Yacynych AM, Kuwana T. Cyanuric chloride as a general linking agent for modified electrodes: attachment of redox groups to pyrolytic graphite. Anal Chem 1978;50:640–645.

    Article  CAS  Google Scholar 

  39. Ianniello RM, Lindsay TJ, Yacynych AM. Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes. Anal Chem 1982;54:1098–1101.

    Article  CAS  Google Scholar 

  40. Abruña HD. Coordination chemistry in two dimensions: chemically modified electrodes. Coord Chem Rev 1988;86:135–189.

    Article  Google Scholar 

  41. Murray RW. Chemically modified electrodes. Acc Chem Res 1980;13:135–141.

    Article  CAS  Google Scholar 

  42. Albery WJ, Hillman AR. Modified electrodes. Annu Rep Prog Chem C 1981;C78:377–437.

    Article  Google Scholar 

  43. Murray RW. Chemically modified electrodes. In: Bard AJ, ed. Electroanalytical Chemistry. New York: Marcel Dekker, 1984, Vol. 13, 191–368.

    Google Scholar 

  44. Yoshida S, Kanno H, Watanabe T. Glutamate sensors carrying glutamate oxidase/peroxidase bienzyme system on tin oxide electrode. Anal Sci 1995;11:251–256.

    Article  CAS  Google Scholar 

  45. Tarasevich MR. Electrochemistry of Carbon Materials. Moscow: Nauka, 1984.

    Google Scholar 

  46. Ianniello RM, Wieck HJ, Yacynych AM. Characterization of chemically modified carbonaceous electrode materials by diffuse reflectance Fourier transform infrared spectrometry. Anal Chem 1983;55:2067–2070.

    Article  CAS  Google Scholar 

  47. Koval CA, Anson FC. Electrochemistry of the ruthenium (3+, 2+) couple attached to graphite electrodes. Anal Chem 1978;50:223–229.

    Article  CAS  Google Scholar 

  48. Rocklin RD, Murray RW. Chemically modified carbon electrodes: XVII. Metallation of immobilized tetra(aminophenyl)porphyrin with manganese, iron, cobalt, nickel, copper and zinc, and electrochemistry of diprotonated tetraphenyl porphyrin. J Electroanal Chem 1979;100:271–282.

    Article  CAS  Google Scholar 

  49. Bourdillon C, Hervagault C, Thomas D. Increase in operational stability of immobilized glucose oxidase by the use of an artificial cosubstrate. Biotech Bioeng 1985;27:1619–1622.

    Article  CAS  Google Scholar 

  50. Osborn JA, Ianniello RM, Wieck HJ, et al. Use of chemically modified activated carbon as a support for immobilized enzymes. Biotech Bioeng 1982;24:1653–1669.

    Article  CAS  Google Scholar 

  51. Bianco P, Haladjian J, Bourdillon C. Immobilization of glucose oxidase on carbon electrodes. J. Electroanal Chem 1990;293:151–163.

    Article  CAS  Google Scholar 

  52. Schuhmann W, Lammert R, Uhe B, et al. Polypyrrole: a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors. Sens Act 1990;B1:537–541.

    CAS  Google Scholar 

  53. Schuhmann W, Wohlschlager H, Lammert R, et al. Leaching of dimethylferrocene: a redox mediator in amperometric enzyme electrodes. Sens Act 1990;B1:571–575.

    CAS  Google Scholar 

  54. Razumas VJ, Jasaitis JJ, Kulys JJ. Electrocatalysis on enzyme-modified carbon materials. Bioelectrochem Bioenerg 1984;12:297–322.

    Article  CAS  Google Scholar 

  55. Laval JM, Boudillon C. Modified glassy carbon electrode with immobilized enzyme. NAD/NADH lactic dehydrogenase. J Electroanal Chem 1983;152:125–141.

    Article  CAS  Google Scholar 

  56. Evans JF, Kuwana T. Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas. Anal Chem 1979;51:358–365.

    Article  CAS  Google Scholar 

  57. Oyama N, Brown AP, Anson FC. Introduction of amine functional groups on graphite electrode surfaces and their use in the attachment of ruthenium(II) to the electrode surface. J Electroanal Chem 1978;87:435–441.

    Article  CAS  Google Scholar 

  58. Oyama N, Anson FC. Attachment of the EDTA complex of ruthenium(III) to the surface of graphite electrodes. Electrochemistry and ligand substitution chemistry with the attached complex. J Electroanal Chem 1978;88:289–297.

    Article  CAS  Google Scholar 

  59. Nowak R, Schultz FA, Umafia M, et al. Chemically modified electrodes: XIV. Attachment of reagents to oxide-free glassy carbon surfaces: electroactive RF polymer films on carbon and platinum electrodes. J Electroanal Chem 1978;94:219–225.

    Article  CAS  Google Scholar 

  60. Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 1980;52:1198–1205.

    Article  CAS  Google Scholar 

  61. Lane RF, Hubbard AT. Electrochemistry of chemisorbed molecules: 1. Reactants connected to electrodes through olefinic substituents. J Phys Chem 1973;77:1401–1410.

    Article  CAS  Google Scholar 

  62. Lane RF, Hubbard AT. Electrochemistry of chemisorbed molecules: 2. The influence of charged chemisorbed molecules on the electrode reactions of platinum complexes. J Phys Chem 1973;77:1411–1421.

    Article  CAS  Google Scholar 

  63. Sharp M, Petersson M, Edstrom K. Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem 1979; 95:123–130.

    Article  CAS  Google Scholar 

  64. Hupp JT, Weaver MJ. Utility of surface reaction entropies for examining reactant-solvent interactions at electrochemical interfaces. Ferricinium-ferrocene attached to platinum electrodes. J Electrochem Soc 1984;131:619–622.

    Article  CAS  Google Scholar 

  65. Brown AP, Anson FC. Molecular anchors for the attachment of metal complexes to graphite electrode surfaces. J Electroanal Chem 1977;83:203–206.

    Article  CAS  Google Scholar 

  66. Jaegfeldt H, Torstensson A, Gorton L, et al. Catalytic oxidation of reduced nicotinamide adenine dinucleotide by graphite electrodes modified with adsorbed aromatics containing catechol functionalities. Anal Chem 1981;53:1979–1982.

    Article  CAS  Google Scholar 

  67. Jonsson G, Gorton L, Pettersson L. Mediated electron transfer from glucose oxidase at a ferrocene-modified graphite electrode. Electroanalysis 1989;1:49–55.

    Article  CAS  Google Scholar 

  68. Katz E. Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: oriented immobilization of photosynthetic reaction centers. J Electroanal Chem 1994;365:157–164.

    Article  CAS  Google Scholar 

  69. Black AJ, Wooster TT, Geiger WE, et al. Synthesis of a rigid dimethoxynaphthacene-spacer-dithiol which spontaneously attaches to Au and Pt electrodes: properties of monolayer films in nonaqueous solvents. J Am Chem Soc 1993;115:7924–7925.

    Article  CAS  Google Scholar 

  70. Bruant MA, Joa SL, Pemberton JE. Raman scattering from monolayer films of thiophenol and 4-mercaptopyridine at Pt surfaces. Langmuir 1992;8:753–756.

    Article  Google Scholar 

  71. Katz E, Solov’ev AA. Chemical modification of platinum and gold electrodes by naphthaquinones using amines containing sulphydryl or disulphide groups. J Electroanal Chem 1990;291:171–186.

    Article  CAS  Google Scholar 

  72. Walczak MM, Chung C, Stole SM, et al. Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. J Am Chem Soc 1991;113:2370–2378.

    Article  CAS  Google Scholar 

  73. Tang X, Schneider T, Buttry DA. A vibrational spectroscopic study of the structure of electroactive self-assembled monolayers of viologen derivatives. Langmuir 1994;10:2235–2240.

    Article  CAS  Google Scholar 

  74. Laibinis PE, Fox MA, Folkers JP, et al. Comparisons of self-assembled monolayers on silver and gold: mixed monolayers derived from HS(CH2)21X and HS(CH2)10Y (X,Y=CH3, CH2OH) have similar properties. Langmuir 1991;7:3167–3173.

    Article  CAS  Google Scholar 

  75. Laibinis PE, Bain CD, Whitesides GM. Attenuation of photoelectrons in monolayers of nalkanethiols adsorbed on copper, silver and gold. J Phys Chem 1991;95:7017–7021.

    Article  CAS  Google Scholar 

  76. Laibinis PE, Whitesides GM, Allara DL, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au. J Am Chem Soc 1991;113:7152–7167.

    Article  CAS  Google Scholar 

  77. Laibinis PE, Whitesides GM. co-Terminated alkanethiolate monolayers on surfaces of copper, silver and gold have similar wettabilities. J Am Chem Soc 1992;114:1990–1995.

    Article  CAS  Google Scholar 

  78. Bain CD, Troughton EB, Tao Y-T, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 1989;111:321–335.

    Article  CAS  Google Scholar 

  79. Bain CD, Evall J, Whitesides GM. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group and solvent. J Am Chem Soc 1989;111:7155–7164.

    Article  CAS  Google Scholar 

  80. Bain CD, Biebuyck HA, Whitesides GM. Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides. Langmuir 1989;5:723–727.

    Article  CAS  Google Scholar 

  81. Sheen CW, Shi J-X, Martensson J, et al. A new class of organized self-assembled monolayers: alkanethiols on GaAs (100). J Am Chem Soc 1992;114:1514–1515.

    Article  CAS  Google Scholar 

  82. Gu Y, Lin Z, Butera RA, et al. Preparation of self-assembled monolayers on InP. Langmuir 1995;11:1849–1851.

    Article  CAS  Google Scholar 

  83. Finklea HO, Electrochemistry of organized monolayers of thiols and related molecules on electrodes. In: Bard AJ, Rubinstein I, eds. Electroanalytical Chemistry, New York: Marcel Dekker, 1996, Vol. 19, pp 109–335.

    Google Scholar 

  84. Xu J, Li H. The chemistry of self-assembled long-chain alkanethiol monolayers on gold. J Colloid Interf Sci 1995;176:138–149.

    Article  CAS  Google Scholar 

  85. Cheng Q, Brajter-Toth A. Permselectivity and high sensitivity at ultrathin monolayers: effect of film hydrophobicity. Anal Chem 1995;67:2767–2775.

    Article  CAS  Google Scholar 

  86. Katz E. A chemically modified electrode capable of a spontaneous immobilization of amino compounds due to its functionalization with succinimidyl groups. J Electroanal Chem 1990;291:257–260.

    Article  Google Scholar 

  87. Katz E, Schlereth DD, Schmidt H-L, et al. Reconstitution of the quinoprotein glucose dehydrogenase from its apoenzyme on a gold electrode surface modified with a monolayer of pyrroloquinoline quinone. J Electroanal Chem 1994;368:165–171.

    Article  CAS  Google Scholar 

  88. Katz E, Riklin A, Willner I. Application of stilbene-(4,4’-diisothiocyanate)-2,2’-disulfonic acid as bifunctional reagent for the organization of organic materials and proteins onto electrode surfaces. J Electroanal Chem 1993;354:129–144.

    Article  CAS  Google Scholar 

  89. Williams RA, Blanch HW. Covalent immobilization of protein monolayers for biosensor applications. Biosens Bioelectron 1994;9:159–167.

    Article  PubMed  CAS  Google Scholar 

  90. Creager SE, Olsen KG. Self-assembled monolayers and enzyme electrodes: progress, problems and prospects. Anal Chim Acta 1995;307:277–289.

    Article  CAS  Google Scholar 

  91. Kuwabata S, Okamoto T, Kajiya Y, et al. Preparation and amperometric glucose sensitivity of covalently bound glucose oxidase to (2-aminoethyl)-ferrocene on an Au electrode. Anal Chem 1995;67:1684–1690.

    Article  CAS  Google Scholar 

  92. McRipley MA, Linsenmeier RA. Fabrication of a mediated glucose oxidase recessed microelectrode for the amperometric determination of glucose. J Electroanal Chem 1996;414:235–246.

    Article  Google Scholar 

  93. Jin W, Bier F, Wollenberger U, et al. Construction and characterization of a multi-layer enzyme electrode: covalent binding of quinoprotein glucose dehydrogenase onto gold electrodes. Biosens Bioelectron 1995:10:823–829.

    Article  CAS  Google Scholar 

  94. Sawaguchi T, Matsue T, Uchida I. Catalytic capability of diaphorase bound to a self-assembled thiol monolayer at a gold electrode. Bioelectrochem Bioenerg 1992;29:127–133.

    Article  CAS  Google Scholar 

  95. Prime KL, Whitesides GM. Adsorption of proteins onto surface containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 1993;115:10714–10721.

    Article  CAS  Google Scholar 

  96. Kinnear KT, Monbouquette HG. Direct electron transfer to Escherichia coli fumarate reductase in self-assembled alkanethiol monolayers on gold electrodes. Langmuir 1993;9:2255–2257.

    Article  CAS  Google Scholar 

  97. Mrksich M, Sigal GB, Whitesides GM. Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold. Langmuir 1995;11:4383–4385.

    Article  CAS  Google Scholar 

  98. Nahir TM, Bowden EF. The distribution of standard rate constants for electron transfer between thiol-modified gold electrodes and adsorbed cytochrome c. J Electroanal Chem 1996;410:9–13.

    Article  Google Scholar 

  99. Naumann R, Jonczyk A, Kopp R, et al. Incorporation of membrane proteins in solid-supported lipid layers. Angew Chem Int Ed Engl 1995;34:2056–2058.

    Article  CAS  Google Scholar 

  100. Tarlov MJ, Bowden EF. Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. J Am Chem Soc 1991;113:1847–1849.

    Article  CAS  Google Scholar 

  101. Hoshi T, Takeshita H, Anzai J, et al. Use of an electrodeposited avidin film for the preparation of lactate and choline sensors. Anal Sci 1995;11:311–312.

    Article  CAS  Google Scholar 

  102. Du X, Anzai J, Osa T, et al. Amperometric alcohol sensors based on protein multilayers composed of avidin and biotin-labeled alcohol oxidase. Electroanalysis 1996;8:813–816.

    Article  CAS  Google Scholar 

  103. Pantano P, Morton TH, Kuhr WG. Enzyme-modified carbon-fiber microelectrodes with millisecond response times. J Am Chem Soc 1991;113:1832–1833.

    Article  CAS  Google Scholar 

  104. Bourdillon C, Demaille C, Gueris J, et al. A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment. J Am Chem Soc. 1993;115:12264–12269.

    Article  CAS  Google Scholar 

  105. Bourdillon C, Demaille C, Moiroux J, et al. Step-by-step immunological construction of a fully active multilayer enzyme electrode. J Am Chem Soc 1994;116:10328–10329.

    Article  CAS  Google Scholar 

  106. Bourdillon C, Demaille C, Moiroux J, et al. From homogeneous electroenzymatic kinetics to antigen-antibody construction and characterization of spatially ordered catalytic enzyme assemblies on electrodes. Acc Chem Res 1996;29:529–535.

    Article  CAS  Google Scholar 

  107. Willner I, Riklin A, Shoham B, et al. Development of novel biosensor enzyme electrodes: glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes. Adv Mater 1993;5:912–915.

    Article  CAS  Google Scholar 

  108. Shoham B, Migron Y, Riklin A, et al. A bilirubin biosensor based on a multilayer network enzyme electrode. Biosens Bioelectron 1995;10:341–352.

    Article  CAS  Google Scholar 

  109. Riklin A, Willner I, Glucose and acetylcholine sensing multilayer enzyme electrodes of controlled enzyme layer thickness. Anal Chem 1995;67:4118–4126.

    Article  CAS  Google Scholar 

  110. He P-G, Takahashi T, Anzai J, et al. A facile method to regulate enzyme load on biosensor electrode based on avidin/biotin complexation. Pharmazie 1994;49:621–622.

    PubMed  CAS  Google Scholar 

  111. Hoshi T, Anzai J, Osa T. Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors. Anal Chem 1995;67:770–774.

    Article  PubMed  CAS  Google Scholar 

  112. Anzai J. Takeshita H, Hoshi T, et al. Regulation of output current of L-lactate sensors based on alternate deposition of avidin and biotinylated lactate oxidase on electrode surface through avidin/biotin complexation. Chem Pharm Bull 1995;43:520–522.

    Article  CAS  Google Scholar 

  113. Katz E, Schlereth DD, Schmidt H-L. Electrochemical study of pyrroloquinoline quinone covalently immobilized as monolayer onto a cystamine modified gold electrode. J Electroanal Chem 1994;367:59–70.

    Article  CAS  Google Scholar 

  114. Wang J. Electroanalysis and biosensors. Anal Chem 1995;67:487R–492R.

    Article  CAS  Google Scholar 

  115. Willner I, Heleg-Shabtai V, Blonder R, et al. Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 1996;118:10321–10322.

    Article  CAS  Google Scholar 

  116. Günther H, Paxinos AS, Schultz M. Direct electron transfer between carbon electrode, immobilized mediator and an immobilized viologen-accepting pyridine nucleotide oxidoreductase. Angew Chem Int Ed Engl 1990;29:1053–1055.

    Article  Google Scholar 

  117. Wienkamp R, Steckhan E. Indirect electrochemical regeneration of NADH by a bipyridinerhodium(I) complex as electron-transfer agent. Angew Chem Int Ed Engl 1982;21:782–783.

    Article  Google Scholar 

  118. Rupert R, Herrmann S, Steckhan E. Efficient indirect electrochemical in-situ regeneration of NADH: electrochemically driven enzymatic reduction of pyruvate catalyzed by D-LDH. Tetrahedron Lett. 1987;28:6583–6586.

    Article  Google Scholar 

  119. Moiroux J, Elving PJ. Mechanistic aspects of the electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH). J Am Chem Soc 1980;102:6533–6538.

    Article  CAS  Google Scholar 

  120. Gorton L, Persson B, Hale PD, et al. Electrocatalytic oxidation of nicotinamide adenine dinucleotide cofactor at chemically modified electrodes. In: Edelman PG, Wang J, eds. Biosensors and Chemical Sensors. ACS Symp. Ser. 487. Washington, DC: American Chemical Society, 1992, pp 56–83.

    Google Scholar 

  121. Tse DC-S, Kuwana T. Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 1978;50:1315–1318.

    Article  CAS  Google Scholar 

  122. Ueda C, Tse DC-S, Kuwana T. Stability of catechol modified carbon electrodes for electrocatalysis of dihydronicotinamide adenine dinucleotide and ascorbic acid. Anal Chem 1982;54:850–856.

    Article  CAS  Google Scholar 

  123. Jaegfeldt H, Kuwana T, Johansson G. Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide. J Am Chem Soc 1983;105:1805–1814.

    Article  CAS  Google Scholar 

  124. Degrand C, Miller LL. An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation. J Am Chem Soc 1980;102:5728–5732.

    Article  CAS  Google Scholar 

  125. Katz E, Lötzbeyer T, Schlereth DD, et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum electrode surfaces modified with a monolayer of pyrroloquinoline quinone: effect of Ca’ cations. J Electroanal Chem 1994;373:189–200.

    Article  CAS  Google Scholar 

  126. Huck H, Schmidt H-L. Chloranil as catalyst for the electrochemical oxidation of NADH to NAD+. Angew Chem 1981;93:421–422.

    Article  CAS  Google Scholar 

  127. Schuhmann W, Huber J, Wohlschlager H, et al. Electrocatalytic oxidation of NADH at mediator-modified electrode surfaces. J Biotech 1993;27:129–142.

    Article  CAS  Google Scholar 

  128. Torstensson A, Gorton L. Catalytic oxidation of NADH by surface-modified graphite electrodes. J Electroanal Chem 1981;130:199–207.

    Article  CAS  Google Scholar 

  129. Gorton L, Torstensson A, Jaegfeldt H, et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue. J Electroanal Chem 1984;161:103–120.

    Article  CAS  Google Scholar 

  130. Persson B, Lan HL, Gorton L, et al. Amperometric biosensors based on electrocatalytic regeneration of NAD+ at redox polymer-modified electrodes. Biosens Bioelectron 1993;8:81–88.

    Article  CAS  Google Scholar 

  131. Kulys J, Gleixner G, Schuhmann W, et al. Biocatalysis and electrocatalysis at carbon paste electrodes doped by diaphorase-methylene green and diaphorase-meldola blue. Electroanalysis 1993;5:201–207.

    Article  CAS  Google Scholar 

  132. Schlereth DD, Katz E, Schmidt H-L. Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for NADH oxidation. Electroanalysis 1994;6:725–734.

    Article  CAS  Google Scholar 

  133. Schlereth DD, Katz E, Schmidt H-L. Surface-modified gold electrodes for electrocatalytic oxidation of NADH based on the immobilization of phenoxazine and phenothiazine derivatives on self-assembled monolayers. Electroanalysis 1995;7:46–54.

    Article  CAS  Google Scholar 

  134. Ohtani M, Kuwabata S, Yoneyama H. Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers. J Electroanal Chem 1997;422:45–54.

    Article  CAS  Google Scholar 

  135. Vering T, Schuhmann W, Seiwald D, et al. A potentiostatic multi-pulse method using redox polymers for potentiometric measurements of enzymic redox-reactions. J Electroanal Chem 1994;364:277–279.

    Article  CAS  Google Scholar 

  136. Marko-Varga G, Appelqvist R, Gorton L. A glucose sensor based on glucose dehydrogenase adsorbed on a modified carbon electrode. Anal Chim Acta 1986;179:371–379.

    Article  CAS  Google Scholar 

  137. Schmidt H-L, Grenner G. Coenzyme properties of NAD+ bound to different matrices through the amino group in the 6-position. Eur J Biochem 1976;67:295–302.

    Article  PubMed  CAS  Google Scholar 

  138. Zappelli P, Rossodivita A, Re L. Synthesis of coenzymically active soluble and insoluble macromolecularized NAD+ derivatives. Eur J Biochem 1975;54:475–482.

    Article  PubMed  CAS  Google Scholar 

  139. Zappelli P, Rossodivita A, Prosperi G, et al. New coenzymically-active soluble and insoluble macromolecular NAD+ derivatives. Eur J Biochem 1976;62:211–215.

    Article  PubMed  CAS  Google Scholar 

  140. Zappelli P, Pappa R, Rossodivita A, et al. Preparation and coenzymic activity of soluble polyethyleneimine-bound NADP+ derivatives. Eur J Biochem 1977;72:309–315.

    Article  PubMed  CAS  Google Scholar 

  141. Furukawa S, Katayama N, Iizuka T, et al. Preparation of polyethylene glycol-bound NAD+ and its application in a model enzyme reactor. FEBS Lett 1980;121:239–242.

    Article  CAS  Google Scholar 

  142. Yamazaki Y, Maeda H. The synthesis of new polymer derivatives of NAD+ by radical copolymerization and their coenzymic activity. Agr Biol Chem 1981;45:2277–2288.

    Article  CAS  Google Scholar 

  143. Bückmann AF. A new synthesis of coenzymically active water-soluble macromolecular NAD+ and NADP+ derivatives. Biocatalysis 1987;1:173–186.

    Article  Google Scholar 

  144. Yamazaki Y, Maeda H. The co-immobilization of NAD+ and dehydrogenases and its application to bioreactors for synthesis and analysis. Agr Biol Chem 1982;46:1571–1581.

    Article  CAS  Google Scholar 

  145. Eguchi T, Iizuka T, Kagotani T, et al. Covalent linking of poly(ethylene-glycol)-bound NAD+ with Thermus thermophilus malate dehydrogenase. NADH regeneration unit for a coupled second-enzyme reaction. Eur J Biochem 1986;155:415–421.

    Article  PubMed  CAS  Google Scholar 

  146. Montagné, M, Marty J-L. Bi-enzyme amperometric n-lactate sensor using macromolecular NAD+. Anal Chim Acta 1995;315:297–302.

    Article  Google Scholar 

  147. Mánsson M-O, Larsson P-O, Mosbach K. Covalent binding of an NAD+ analogue to liver alcohol dehydrogenase resulting in an enzyme-coenzyme complex not requiring exogeneous coenzyme for activity. Eur J Biochem 1978;86:455–463.

    Article  PubMed  Google Scholar 

  148. Mánsson M-O, Larsson P-O, Mosbach K. Recycling by a second enzyme of NAD+ covalently bound to alcohol dehydrogenase. FEBS Len 1979;98:309–313.

    Article  Google Scholar 

  149. Woenckhaus C, Koob R, Burkhard A, et al. Preparations of holodehydrogenases by covalent fixation of NAD+-analogs to alcohol and lactate dehydrogenase. Bioorg Chem 1983;12:45–57.

    Article  CAS  Google Scholar 

  150. Kovár J, Simek K, Kucera I, et al. Steady-state kinetics of horse-liver alcohol dehydrogenase with covalently bound coenzyme analogue. Eur J Biochem 1984;139:585–591.

    Article  PubMed  Google Scholar 

  151. Goulas P. Covalent binding of an NAD+ analogue to horse liver alcohol dehydrogenase in a ternary complex with pyrazole. Eur J Biochem 1987;168:469–473.

    Article  PubMed  CAS  Google Scholar 

  152. Willner I, Riklin A. Electrical communication between electrode and NAD(P)+-dependent enzymes using pyrroloquinoline quinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors. Anal Chem 1994;66:1535–1539.

    Article  CAS  Google Scholar 

  153. Anderson JL, Bowden EF, Pickup PG. Dynamic electrochemistry: methodology and application. Anal Chem 1996;68:379R–444R (Section: Immunological and recognition-based electrochemistry, 422R).

    Article  Google Scholar 

  154. Ho WO, Atehy D, McNeil CJ. Amperometric detection of alkaline phosphatase activity at a horseradish peroxidase enzyme electrode based on activated carbon: potential application to electrochemical immunoassay. Biosens Bioelectron 1995;10:683–691.

    Article  PubMed  CAS  Google Scholar 

  155. McNeil CJ, Atehy D, Ho WO. Direct electron transfer bioelectronic interfaces: application to clinical analysis. Biosens Bioelectron 1995;10:75–83.

    Article  PubMed  CAS  Google Scholar 

  156. Ivnitski D, Rishpon J. A one-step, separation-free amperometric enzyme immunosensor. Biosens Bioelectron 1996;11:409–417.

    Article  PubMed  CAS  Google Scholar 

  157. Wittstock G, Emons H, Heineman WR, Electron transfer through an immunoglobulin layer via an immobilized redox mediator. Electroanalysis 1996;8:143–146.

    Article  CAS  Google Scholar 

  158. Huang S-C, Caldwell KD, Lin J-N, et al. Site-specific immobilization of monoclonal antibodies using spacer-mediated antibody attachment. Langmuir 1996;12:4292–4298.

    Article  CAS  Google Scholar 

  159. Willner I, Blonder R, Dagan A. Application of photoisomerizable antigenic monolayer-electrodes as reversible amperometric immunosensors. J Am Chem Soc 1994;116:9365–9366.

    Article  CAS  Google Scholar 

  160. Blonder R, Levi S, Tao G, et al. Development of amperometric and microgravimetric immunosensors and reversible immunosensors using antigen and photoisomerizable antigen monolayer electrodes. J Am Chem Soc 1997; 119: 10467–10478.

    Article  CAS  Google Scholar 

  161. Katz E, Willner I. Amperometric amplification of antigen-antibody association at monolayer interfaces: design of immunosensor electrodes. J Electroanal Chem 1996;418:67–72.

    Article  CAS  Google Scholar 

  162. Blonder R, Katz E, Cohen Y, et al. Application of redox enzymes for probing the antigen-antibody association at monolayer interfaces: development of amperometric immunosensor electrodes. Anal Chem 1996;68:3151–3157.

    Article  PubMed  CAS  Google Scholar 

  163. Ilchmann D, Helbig D, Göhler H, et al. Regeneration of adsorbed and covalently immobilized antibodies on solid phases for immunoassay. J Clin Chem Clin Biochem 1990;28:677–681.

    PubMed  CAS  Google Scholar 

  164. Sibley DET, Ramsay G, Lubrano GJ, et al. Stability and reusability of enzyme-linked immunosorbent assay (ELISA) plates. Anal Lett 1993;26:1623–1634.

    Article  CAS  Google Scholar 

  165. Joyeux C, Chrzavzez E, Boquien CY, et al. Reusable solid phase immunoassay for the detection of citrate lyase. Anal Chim Acta 1996;320:77–86.

    Article  CAS  Google Scholar 

  166. Hashimoto K, Ito I, Ishimori Y. Novel DNA sensor for electrochemical gene detection. Anal Chim Acta 1994;286:219–224.

    Article  CAS  Google Scholar 

  167. Milian KM, Saraullo A, Mikkelsen SR. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 1994;66:2943–2948.

    Article  Google Scholar 

  168. Hashimoto K, Miwa K. Goto M et al. DNA-sensor: a novel electrochemical gene detection method using carbon electrode immobilized DNA-probes. Supramolecular Chem 1993;2:265–270.

    Article  CAS  Google Scholar 

  169. Xu X-H, Yang HC, Mallouk TE, et al. Immobilization of DNA on an aluminium(III) alkane bisphosphonate thin film with electrogenerated chemiluminescent detection. J Am Chem Soc 1994;116:8386–8387.

    Article  CAS  Google Scholar 

  170. Hashimoto K, Ito K. Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 1994;66:3830–3833.

    Article  PubMed  CAS  Google Scholar 

  171. Liu S, Ye J, He P, et al. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrodes. Anal Chim Acta 1996;335:239–243.

    Article  CAS  Google Scholar 

  172. Pang D-W, Zhang M, Wang Z-L, et al. Modification of glassy carbon and gold electrodes with DNA. J Electroanal Chem 1996;403:183–188.

    Article  Google Scholar 

  173. de Lumley-Woodyear T, Campbell CN, Heller A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J Am Chem Soc 1996;118:5504–5505.

    Article  Google Scholar 

  174. Liedberg B, Nylander C, Lundström I. Biosensing with surface plasmon resonance-how it all started. Biosens Bioelectron 1995;10:i-ix.

    Article  PubMed  CAS  Google Scholar 

  175. Lion-Dagan M, Ben-Dov I, Willner I. Microgravimetric quartz-crystal-microbalance analysis of cytochrome c interactions with pyridine and pyridine-nitrospiropyran monolayer electrodes and characterization of interprotein complexes at the functionalized surfaces. Colloids Surf B: Biointerfaces 1997; 8:251–260.

    Article  CAS  Google Scholar 

  176. Ben-Dov I, Willner I, Zisman E. Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz-crystal-microbalance microgravimetric analyses. Anal Chem 1997; 69:3506–3512.

    Article  PubMed  CAS  Google Scholar 

  177. Nygren H. Real-time recording of antigen-antibody reactions at surfaces: interpretation of data and a statistical model. Colloids Surf B: Biointerfaces 1995;4:243–250.

    Article  CAS  Google Scholar 

  178. Wilson R, Kremeskötter J, Schiffrin DJ, et al. Electrochemiluminescence detection of glucose oxidase as a model for flow injection immunoassays. Biosens Bioelectron 1996;11:805–810.

    Article  CAS  Google Scholar 

  179. Rickert J, Göpel W, Beck W, et al. A “mixed” self-assembled monolayer for an impedimetric immunosensor. Biosens Bioelectron 1996;11:757–768.

    Article  PubMed  CAS  Google Scholar 

  180. Mirsky VM, Krause C, Heckmann DK. Capacitive sensor for lipolytic enzymes. Thin Solid Films 1996;284:939–941.

    Article  Google Scholar 

  181. Heleg-Shabtai V, Katz E, Willner I. Assembly of microperoxidase-11 and Co(II)-protoporphyrin IX reconstituted myoglobin monolayers on Au-electrodes: integrated bioelectrocatalytic interfaces. J Am Chem Soc 1997; 119:8121–8122.

    Article  CAS  Google Scholar 

  182. Heleg-Shabtai V, Katz E, Levi S, et al. Microperoxidase-11 functionalized electrodes: an active monolayer interface for the electrocatalyzed reduction of Co(II)-protoporphyrin IX reconstituted myoglobin and for the generation of integrated protein electrodes for bioelectrocatalyzed hydrogenation of acetylenes. J Chem Soc: Perkin Trans 2 1997; 2645–2651.

    Google Scholar 

  183. Willner I, Blonder R. Patterning of surfaces by photoisomerizable antibody-antigen monolayers. Thin Solid Films 1995:266:254–257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willner, I., Katz, E., Willner, B. (2000). Layered Functionalized Electrodes for Electrochemical Biosensor Applications. In: Yang, V.C., Ngo, T.T. (eds) Biosensors and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4181-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4181-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6875-5

  • Online ISBN: 978-1-4615-4181-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics