Sedimentary Diatoms and Chrysophytes as Indicators of Lakewater Quality in North America

  • Sushil S. Dixit
  • John P. Smol
Part of the Topics in Geobiology book series (TGBI, volume 15)


Water resources are being increasingly affected by anthropogenic activities. However, long-term data are required to track shifts in environmental variables and to characterize the trajectories of aquatic ecosystems accurately. Unfortunately, historical water quality data are often lacking, and so environmental monitoring programs must either continue for many years before meaningful trends can be inferred or else indirect proxy techniques, such as paleolim nological approaches (Smol, 1992; Charles et al., 1994; Anderson and Battar- bee, 1994), must be used. This chapter summarizes some of the ways that we have used diatom and chrysophyte paleoindicators to assess changes in water quality in North American lakes.


Root Mean Square Error Canonical Correspondence Analysis Diatom Assemblage Diatom Valve Sedimentary Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. J., and Battarbee, R. W., 1994, Aquatic community persistence and variability: A paleolimnological perspective, in: Aquatic Ecology: Scale, Pattern and Process (P. S. Giller, A. G. Hildrew, and D. G. Raffaelli, eds.), Blackwell Scientific Publications, Oxford, pp. 233–259Google Scholar
  2. Appleby, P. G., Richardson, N., Nolan, P. J., and Oldfield, F., 1990, Radiometric dating of the United Kingdom SWAP sites, Phil. Trans. R. Soc. Lond. B 327:233–238.CrossRefGoogle Scholar
  3. Baker, J. P., and Christensen, S. W., 1991, Effects of acidification on biological communities in aquatic ecosystems, in: Acidic Deposition and Aquatic Ecosystems: Regional Case Studies (D. F. Charles, ed.), Springer-Verlag, New York, pp. 83–106.CrossRefGoogle Scholar
  4. Battarbee, R. W., 1986, Diatom analysis, in: Handbook of Holocene Palaeoecology and Palaeo-hydrology (B. E. Berglund, ed.), John Wiley & Sons, Chichester, pp 527–570.Google Scholar
  5. Battarbee, R. W., Mason, J., Renberg, I., and Tailing, J. F., (eds.), 1990, Palaeolimnology and Lake Acidification, The Royal Society, London.Google Scholar
  6. Battarbee, R. W., Charles, D. F., Dixit, S. S., and Renberg, I., 1999, Diatoms as indicators of surface water acidity, in: Applications and Uses of Diatoms (E. F. Stoermer and J. P. Smol, eds.), Cambridge University Press, New York and Cambridge, pp. 85–127.Google Scholar
  7. Bennion, H., Anderson, N. J., and Juggins, S., 1996, Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophi-cation management, Environ. Sci. Technol. 30:2004–2007.CrossRefGoogle Scholar
  8. Binford, M. W.,1990, Calculation and uncertainty analysis of 210Pb data for PIRLA project lake sediment cores, J. Paleolim. 3:253–267.CrossRefGoogle Scholar
  9. Birks, H. J. B., 1995, Quantitative palaeoenvironmental reconstructions, in: Statistical Modeling of Quaternary Science Data, Technical Guide 5 (D. Maddy and J. S. Brew, eds.), Quaternary Research Association, Cambridge, pp. 161–254.Google Scholar
  10. Birks, H. J. B., Line, J. M, Juggins, S., Stevenson, A. C., and ter Braak, C. J. F., 1990, Diatoms and pH reconstructions, Phil. Trans. Roy. Soc. Lond. B 327:263–278.CrossRefGoogle Scholar
  11. Charles, D. F., and Smol, J. P., 1988, New methods for using diatoms and chrysophytes to reconstruct past lakewater pH, Limnol. Oceanogr. 33:1451–1462.CrossRefGoogle Scholar
  12. Charles, D. F., and Smol, J. P. 1990. The PIRLA II project: regional assessment of lake acidification trends. Verh. Int. Verein. Limnol. 24:474–480.Google Scholar
  13. Charles, D. F., and Smol, J. P., 1994, Long-term chemical changes in lakes: Quantitative inferences using biotic remains in the sediment record, in: Environmental Chemistry of Lakes and Reservoirs, Advances in Chemistry Series 237 (L. Baker, ed.), American Chemical Society, Washington, D. C, pp. 3–31.CrossRefGoogle Scholar
  14. Charles, D. F., and Whitehead, D. R., 1986, Paleoecological investigation of recent lake acidification, Report EA-4906, Electric Power Research Institute, Palo Alto, Cal.Google Scholar
  15. Charles, D. F., Binford, M. W., Furlong, E. T., Hites, R. A., Mitchell, M. J., Norton, S. A., Oldfield, F., Paterson, M. J., Smol, J. P., Uutala, A. J., White, J. R., Whitehead, D. R., and Wise, R. J., 1990, Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N. Y., J. Paleolim. 3:195–241.Google Scholar
  16. Charles, D. F., Dixit, S. S, Cumming, B. F., and Smol, J. P., 1991, Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose L., N. Y., J. Paleolim. 5:267–284.CrossRefGoogle Scholar
  17. Charles, D. F., Smol, J. P., and Engstrom, D. R., 1994, Paleolimnological approaches to biomonitoring, in: Biological Monitoring of Aquatic Systems (S. Loeb and A. Spacie, eds.), Lewis Press, Ann Arbor, pp. 233–293.Google Scholar
  18. Cumming, B. F., Smol, J. P., and Birks, H. J. B., 1992a, Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to environmental variables, J. Phycol. 28:162–178.CrossRefGoogle Scholar
  19. Cumming, B. F., Smol, J. P., Kingston, J. C., Charles, D. F., Birks, H. J. B., Camburn, K. E., Dixit, S. S., Uutala, A. J., and Selle, A. R., 1992b, How much acidification has occurred in Adirondack region (New York, USA) lakes since pre-industrial times?, Can. J. Fish. Aquat. Sci. 49:128–141.CrossRefGoogle Scholar
  20. Cumming, B. F., Davey, K. A., Smol, J. P., and Birks, H. J. B., 1994, When did acid-sensitive Adirondack lakes (New York, U.S.A.) begin to acidify and are still acidifying?, Can. J. Fish. Aquat. Sci. 51:1550–1568.CrossRefGoogle Scholar
  21. Dixit, S. S., and Smol, J. P., 1994, Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW), Environ. Monit. Assess. 31:275–306.Google Scholar
  22. Dixit S. S., Dixit A. S., and Smol J. P., 1989a, Lake acidification recovery can be monitored using chrysophycean microfossil, Can. J. Fish. Aquat Sci. 46:1309–1312.CrossRefGoogle Scholar
  23. Dixit, S. S., Dixit, A. S., and Smol, J. P., 19896, Relationship between chrysophyte assemblages and environmental variables in seventy-two Sudbury lakes as examined by canonical correspondence analysis (CCA), Can. J. Fish. Aquat. Sci. 46:1667–1676.CrossRefGoogle Scholar
  24. Dixit, S. S., Smol, J. P., Davis, R. B., and Anderson, D. S., 1990, Utility of scaled chrysophytes in predicting lakewater pH in northern New England lakes, J. Paleolimnol. 3:269–286.CrossRefGoogle Scholar
  25. Dixit, S. S., Dixit, A. S., and Smol, J. P., 1991, Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes, Freshwater Biol. 26:251–265.CrossRefGoogle Scholar
  26. Dixit, S. S., Smol, J. P., Kingston, J. C, and Charles, D. F., 1992a, Diatoms: Powerful indicators of environmental change, Environ. Sci. Technol. 26:22–33.CrossRefGoogle Scholar
  27. Dixit, A. S., Dixit, S. S., and Smol, J. P., 1992b, Algal microfossils provide high temporal resolution of environmental trends, Water Air Soil Pollut. 62:75–87.CrossRefGoogle Scholar
  28. Dixit, S. S., Cumming, B. F., Birks, H. J. B., Smol, J. P., Kingston, J. C, Uutala, A. J., Charles, D. F., and Camburn, K. E., 1993, Diatom assemblages from Adirondack lakes (New York, U.S.A.) and the development of inference models for retrospective environmental assessment, J. Paleolim. 8:27–47.CrossRefGoogle Scholar
  29. Dixit, S. S., Smol, J. P., Charles, D. F., Hughes, R. M., and Collins, G. B., 1999, Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms, Can. J. Fish. Aquat. Sci. 56:131–152.Google Scholar
  30. Duff, K., Zeeb, B., and Smol, J. P., 1995, Atlas of Chrysophycean Cysts, Kluwer Academic, Dordrecht.Google Scholar
  31. Gensemer, R. W., 1991, The effect of pH and aluminum on the growth of the acidophilous diatom Asterionella ralfsii var. americana, Limnol. Oceanogr. 36:123–131.Google Scholar
  32. Glew, J. R., 1988, A portable extruding device for close interval sectioning of unconsolidated core samples, J. Paleolim. 1:235–239.CrossRefGoogle Scholar
  33. Glew, J. R., 1989, A new trigger mechanism for sediment samplers, J. Paleolim. 2:241–243.CrossRefGoogle Scholar
  34. Hall, R. I. and Smol, J. P., 1992, A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes, Freshwater Biol. 27:417–434.CrossRefGoogle Scholar
  35. Hughes, R. M., 1995, Defining acceptable biological status by comparing with reference conditions, in: Biological Assessment and Criteria: Tools for Water Besource Planning and Decision Making (W. S. Davis and T. P. Simon, eds.), Lewis Press, Boca Raton, pp. 31–47.Google Scholar
  36. Hustedt, F., 1939, Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra, Arch. Hydrobiol (Suppl.) 16:1-155, 264–394.Google Scholar
  37. Hutchinson, T. C. and Havas, M., 1986, Recovery of previously acidified lakes near Coniston, Canada following reductions in atmospheric sulphur and metal emissions, Water Air Soil Pollut. 28:319–333.Google Scholar
  38. Huttunen, P., and Meriläinen, J., 1978, New freezing device providing large unmixed sediment: samples from lakes, Ann. Bot. Fennici 15:128–130.Google Scholar
  39. Keller, W., Pitblado, J. R., and Conroy, N., 1986, Water quality improvements in the Sudbury Ontario, Canada area related to reduced smelter emissions, Water Air Soil Pollut. 31:765–774.CrossRefGoogle Scholar
  40. Kingston, J. C., Birks, H. J. B., Uutala, A. J., Cumming, B. F., and Smol, J. P., 1992, Assessing trends in fishery resources and lakewater aluminum from paleolimnological analyses of siliceous algae, Can. J. Fish. Aquat. Sci. 49:116–127.CrossRefGoogle Scholar
  41. Larsen, D. P., Stevens, D. L., Selle, A. R., and Paulsen, S. G., 1991, Environmental monitoring and assessment program-surface waters: A northeast lake pilot, Lake Reserv. Manage. 7:1–11.CrossRefGoogle Scholar
  42. Line J. M., Ter Braak, C. J. F., and Birks, H. J. B.,1994, WACALIB version 3.3—a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction, J. Paleolim. 10:147–152.CrossRefGoogle Scholar
  43. Livingstone, D. A., 1955, A lightweight piston sampler for lake deposits, Ecology 36:137–139.CrossRefGoogle Scholar
  44. Paulsen, S. G., Larsen, D. P., Kaufmann, P., Whittier, T., Baker, J. R., Peck, D. V., McGue, J., Stevens, D., Stoddard, J., Hughes, R., McMullen, D., Lazorchak, J., Kinney, W., et al., 1991, EMAP-Surface Waters Monitoring and Research Strategy—Fiscal Year 1991. U. S. Environmental Protection Agency. EPA/600/3-91/022.Google Scholar
  45. Pienitz, R., Smol, J. P., and Birks, H. J. B., 1995, Assessment of freshwater diatoms as quantitative indicators of past climate change in the Yukon and Northwest Territories, Canada, J. Paleolim. 13:21–49.CrossRefGoogle Scholar
  46. Simola, H., 1977, Diatom succession in the formation of annually laminated sediment in Lovojarvi, a small eutrophicated lake, Ann. Bot. Fennici 14:143–148.Google Scholar
  47. Siver, P. A., 1991, The Biology of Mallomonas, Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
  48. Smol, J. P., 1980, Fossil synuracean (Chrysophyceae) scales in lake sediments: a new group of paleoindicators, Can. J. Bot. 58:458–465.Google Scholar
  49. Smol, J. P., 1992, Paleolimnology: an important tool for effective ecosystem management, J. Aquat. Ecosyst. Health 1:49–58.CrossRefGoogle Scholar
  50. Smol, J. P., 1995, Application of chrysophytes to problems in paleoecology, in: Chrysophyte Algae: Ecology, Phylogeny and Development (C. Sandgren, J. P. Smol, and J. Kristiansen, eds.), Cambridge University Press, Cambridge, pp. 303–329.CrossRefGoogle Scholar
  51. Smol, J. P., Brown, S. R., and McNeely, R. N., 1983, Cultural disturbances and trophic history of a small meromictic lake from central Canada, Hydrobiologia 103:125–130.CrossRefGoogle Scholar
  52. Stoermer, E. F., and Smol, P., (eds.), 1999, The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, Cambridge.Google Scholar
  53. Sullivan, T. J., Turner, R. S., Charles, D. F., Cumming, B. F., Smol, J. P., Schofield, C. L., Driscoll, C. T. Cosby, B. J., Birks, H. J. B., Uutala, A. J., Kingston, J. C, Dixit, S. S., Bernert, J. A., Ryan, P. F. and Marmorek, D. R., 1992, Use of historical assessment for evaluation of process-based model projections of future environmental change—lake acidification in the Adirondack Mountains, New-York, U.S.A., Environ. Pollut. 77:253–262.CrossRefGoogle Scholar
  54. Ter Braak, C. J. F., 1987, CANOCO—A FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.0), TNO Institute of Applied Computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands.Google Scholar
  55. Ter Braak, C. J. F., 1988, Partial canonical correspondence analysis, in: Classification and Related Methods of Data Analysis (H. H. Bock, ed.), North-Holland, Amsterdam, pp. 551–558.Google Scholar
  56. Ter Braak, C. J. F., and Juggins, S., 1993, Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages, Hydrobiologia 269270:485–502.Google Scholar
  57. Uutala, A. J., 1990, Chaoborus (Diptera: Chaoboridae) mandibles—Paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes, J. Paleolim. 4:139–151.CrossRefGoogle Scholar
  58. Wilson, S. E., Cumming, B. F., and Smol, J. P., 1996, Assessing the reliability of salinity inference models from diatom assemblages: An examination of a 219-lake data set from western North America, Can J. Fish. Aquat. Sci. 53:1580–1594.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sushil S. Dixit
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonOntarioCanada

Personalised recommendations