A Biobehavioral Perspective on Developmental Psychopathology

Excessive Aggression and Serotonergic Dysfunction in Monkeys
  • Stephen J. Suomi


It can be persuasively argued that few topics of scientific inquiry pose more formidable challenges—theoretical, empirical, or applied—than the development of behavioral abnormalities, especially in organisms whose nervous systems remain relatively plastic throughout ontogeny. Researchers and clinical workers in this area are frequently faced with decisions as to whether the phenomenon under investigation or treatment truly represents a pathology or is merely unusual or extreme in the statistical sense—or perhaps simply reflects a phase of development that eventually will be outgrown. In addition, those who study psychopathological disorders in children and adolescents must routinely deal with behavioral and biological systems that often express themselves in diverse (and sometimes seemingly independent) fashions not only at different ages but also at different levels of analysis. For this population, obvious changes in behavior are not always reflected by systematic changes in physiology—or vice versa. Moreover, profound complications accompany rigorous study of any developing systems or individuals, relative to those that are already stable or mature, be they normal or anomalous. As stated by Sackett, Sameroff, Cairns, and Suomi (1981):

The study of development poses a major paradox for students of behavior. The problem arises from the fact that change is an essential property of development. Virtually all features of the organism undergo modification during its life span. On the other hand, continuity over time seems essential for individual uniqueness, organization, and the maintenance of integrated patterns of behavior. The paradox is simply this: How can continuity and persistence be achieved in an organismic system that necessarily undergoes maturational, interactional, and social-cultural change? (p. 23)


Rhesus Monkey Physical Aggression Serotonin Transporter Gene Developmental Psychopathology Serotonin Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, L. Y., & Seligman, M. E. P. (1977). Modeling psychopathology in the laboratory: History and rationale. In J. D. Maser & M. E. P. Seligman (Eds.), Psychopathology: Experimental models (pp. 1–26). San Francisco: Freeman.Google Scholar
  2. Alexander, B. K., & Harlow, H. E (1965). Social behavior of juvenile rhesus monkeys subjected to different rearing conditions during the first 6 months of life. Zoologia Jahr Physiologia, 60, 167–174.Google Scholar
  3. Bennett, A. J. Lesch, K. R, Heils, A., Long, J. Lorenz, J. Shoaf, S. E., Champoux, M., Suomi, S. J., Linnoila, M., & Higley, J. D. (1998). Serotonin transporter gene variation, strain, and early rearing environment affect CSF 5-HIAA concentrations in rhesus monkeys (Macaca mulatta). American Journal of Primatology, 45, 168–169.Google Scholar
  4. Bowlby, J. (1986). A secure base. New York: Basic Books.Google Scholar
  5. Brown, G. L., Goodwin, F. K., Ballenger, J. C., Goyer, P. F., & Major, L. E (1979). Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Research, 1, 131–139.PubMedCrossRefGoogle Scholar
  6. Brown, G. L., Linnoila, M., & Goodwin, F. K. (1990). Clinical assessment of human aggression and impulsivity in relation to biochemical measures. In H. M. Van Praag, R. Plutchik, & A. Apter (Eds.), Violence and suicidality: Perspectives in clinical and psychobiological research (pp. 184–217). New York: Brunner/Mazel.Google Scholar
  7. Champoux, M., Byrne, E., Delizio, R. D., & Suomi, S. J. (1992). Motherless mothers revisited: Rhesus maternal behavior and rearing history. Primates, 33, 251–255.CrossRefGoogle Scholar
  8. Champoux, M., Higley, J. D., & Suomi, S. J. (1997). Behavioral and physiological characteristics of Indian and Chinese-Indian hybrid rhesus macaque infants. Developmental Psychobiology, 31, 49–63.PubMedCrossRefGoogle Scholar
  9. Cloninger, C. R. (1987). Neurogenic adaptive mechanisms in alcoholism. Science, 236, 410–416.PubMedCrossRefGoogle Scholar
  10. Dittus, W. P. J. (1979). The evolution of behaviours regulating density and age-specific sex ratios in a primate population. Behaviour, 69, 265–302.CrossRefGoogle Scholar
  11. Dodge, K. (1980). Social cognition and children’s aggressive behavior. Child Development, 51, 162–170.PubMedCrossRefGoogle Scholar
  12. Doudet, D., Hommer, D., Higley, J. D., Andreason, P. J., Moneman, R., Suomi, S. J., & Linnoila, M. (1995). Cerebralglucose metabolism, CSF 5-HIAA, and aggressive behavior in rhesus monkeys. American Journal of Psychiatry,152,1782–1787.PubMedGoogle Scholar
  13. Furlong, R. A., Ho, L., Walsh, C., Rubinsztein, J. S., Jain, S., Pazkil, E. S., Easton, D. F, & Rubinsztein, D. C. (1998). Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. American Journal of Medical Genetics, 81, 58–63.PubMedCrossRefGoogle Scholar
  14. Gallup, G. G. (1977). Self-recognition in primates: A comparative approach to the bidirectional properties of consciousness. American Psychologist, 32, 329–338.CrossRefGoogle Scholar
  15. Harlow, H. F (1969). Age-mate or peer affectional system. In D. S. Lehrman, R. A. Hinde, & E. Shaw (Eds.), Advances in the study of behavior (Vol. 2, pp. 333–383). New York: Academic Press.Google Scholar
  16. Harlow, H. F, & Harlow, M. K. (1969). Effects of various mother-infant relationships on rhesus monkey behaviors. InB. M. Foss (Ed.), Determinants of infant behaviour (Vol. 4, pp. 15–36). London: Metheun.Google Scholar
  17. Harlow, H. F, Harlow, M. K., & Hansen, E. W. (1963). The maternal affectional system of rhesus monkeys. In H. L. Rheingold (Ed.), Maternal behavior in mammals (pp. 254–281). New York: Wiley.Google Scholar
  18. Harlow, H. F., & Suomi, S. J. (1974). Induced depression in monkeys. Behavioral Biology, 12, 273–296.PubMedCrossRefGoogle Scholar
  19. Heils, A., Teufel, A., Petri, S., Stober, G., Riederer, P., Bengel, B., & Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 6, 2621–2624.Google Scholar
  20. Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D., Zajicek, K., Suomi, S. J., Weinberger, D. R., & Linnoila, M. (1998). In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. American Journal of Psychiatry, 155, 1023–1028.Google Scholar
  21. Higley, J. D., Hasert, M. L., Suomi, S. J., & Linnoila, M. (1991). A new nonhuman primate model of alcohol abuse: Effects of early experience, personality, and stress on alcohol consumption. Proceedings of the National Academy of Sciences, 88, 7261–7265.CrossRefGoogle Scholar
  22. Higley, J. D., Hommer, D., Lucas, K., Shaof, S., Suomi, S. J., & Linnoila, M. (in press). CNS serotonin metabolism rate predicts innate tolerance, high alcohol consumption, and aggression during intoxication in rhesus monkeys. Archives of General Psychiatry. Google Scholar
  23. Higley, J. D., King, S. T., Hasert, M. F, Champoux, M., Suomi, S. J., & Linnoila, M. (1996). Stability of individual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology, 14, 67–76.PubMedCrossRefGoogle Scholar
  24. Higley, J. D., Mehlman, R. T., Taub, D. M., Higley, S., Fernald, B., Vickers, J. H., Suomi, S. J., & Linnoila, M. (1996). Excessive mortality in young free-ranging male nonhuman primates with low CSF 5-HIAA concentrations. Archives of General Psychiatry, 53, 537–543.PubMedCrossRefGoogle Scholar
  25. Higley, J. D., Mehlman, R. T., Taub, D. M., Higley, S. B., Vickers, J. H., Suomi, S. J., & Linnoila, M. (1992). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436–444.PubMedCrossRefGoogle Scholar
  26. Higley, J. D., & Suomi, S. J. (1996). Reactivity and social competence affect individual differences in reaction to severe stress in children: Investigations using nonhuman primates. In C. R. Pfeffer (Ed.), Intense stress and mental disturbance in children (pp. 3–58). Washington, DC: American Psychiatric Press.Google Scholar
  27. Higley, J. D., Suomi, S. J., & Linnoila, M. (1991). CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology, 103, 551–556.PubMedCrossRefGoogle Scholar
  28. Higley, J. D, Suomi, S. J., & Linnoila, M. (1996). A nonhuman primate model of Type II alcoholism? (Part 2): Diminished social competence and excessive aggression correlates with low CSF 5-HIAA concentrations. Alcoholism: Clinical and Experimental Research, 20, 643–650.CrossRefGoogle Scholar
  29. Higley, J. D., Thompson, W. T., Champoux, M., Goldman, D., Hasert, M. F., Kraemer, G. W., Scanlan, J. M., Suomi, S. J., & Linnoila, M. (1993). Paternal and maternal genetic and environmental contributions to CSF monoamine metabolites in rhesus monkeys (Macaca mulatta). Archives of General Psychiatry, 50, 615–623.PubMedCrossRefGoogle Scholar
  30. Kometsky, C. (1977). Animal models: Problems and promises. In I. Hanin & E. Usdin (Eds.), Animal models in psychiatry and neurology (pp. 1–23). New York: Pergamon Press.Google Scholar
  31. Kruesi, M. J. (1989). Cruelty to animals and CSF 5-HIAA. Psychiatry Research, 28, 115–116.PubMedCrossRefGoogle Scholar
  32. Kruesi, M. J., Rapoport, J. L., Hamburder, S., Hibbs, E., Potter, W. Z., Lenane, M., & Brown, G. L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419–426.PubMedCrossRefGoogle Scholar
  33. Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.PubMedCrossRefGoogle Scholar
  34. Lesch, L. P., Meyer, J., Glatz, K., Flugge, G., Hinney, A., Hebebrand, J., Klauck, S. M., Poustka, A., Poustka, F., Bengel, D., Mossner, R., Riederer, P., & Heils, A. (1997). The 5-HTT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: Alternative biallelic variation in rhesus monkeys. Journal of Neural Transmission, 104, 1259–1266.PubMedCrossRefGoogle Scholar
  35. Lindburg, D. G. (1991). Ecological requirements of macaques. Laboratory Animal Science, 41, 315–322.PubMedGoogle Scholar
  36. Linnoila, M. (1988). Monoamines and impulse control. In J. A. Swinkels & W. Blijeven (Eds.), Depression,anxiety, and aggression (pp. 167–172). Houten, The Netherlands: Medidact.Google Scholar
  37. Linnoila, M., Deiong, J., & Virkkunen, M. (1989). Monoamines, glucose metabolism, and impulse control. Psycho-pharmacy Bulletin, 25, 404–406.Google Scholar
  38. Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F. K. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences, 33, 2609–2614.PubMedCrossRefGoogle Scholar
  39. Lovejoy, C. O. (1981). The origins of man. Science, 211, 341–350.PubMedCrossRefGoogle Scholar
  40. MacKinnon, C. E., Lamb, M. E., Arbuckle, B., Baradan, L. P., & Volling, B. (1992). The relationship between biased maternal and filial attributions and the aggressiveness of their interactions. Development and Psychopathology, 4, 403–415.CrossRefGoogle Scholar
  41. Mann, J. J., Arango, V., & Underwood, M. E. (1990). Serotonin and suicidal behavior. Annals of the New York Academy of Science, 600, 476–485.CrossRefGoogle Scholar
  42. McKinney, W. T., & Bunney, W. E. (1969). Animal model of depression: Review of evidence and implications for research. Archives of General Psychiatry, 21, 240–248.PubMedCrossRefGoogle Scholar
  43. Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J. H., Suomi, S. J., & Linnoila, M. (1994). Low cerebrospinal fluid 5 hydroxyindoleacetic acid concentrations are correlated with severe aggression and reduced impulse control in free-ranging primates. American Journal of Psychiatry, 151, 1485–1491.PubMedGoogle Scholar
  44. Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J. H., Suomi, S. J., & Linnoila, M. (1995). CSF 5-HIAA concentrations are correlated with sociality and the timing of emigration in free-ranging primates. American Journal of Psychiatry, 152, 901–913.Google Scholar
  45. Mehlman, P. T., Higley, J. D., Fernald, B. J., Sallee, F. R., Suomi, S. J., & Linnoila, M. (1997). CSF 5-HIAA, testosterone, and sociosexual behaviors in free-ranging male macaques during the breeding season. Psychiatric Research, 72, 89–102.CrossRefGoogle Scholar
  46. Negin, D., & Tremblay, R. E. (1999). Trajectories of boys’ physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Development. Google Scholar
  47. Offord, D. R., Alder, R. J., & Boyle, M. H. (1987). Prevalence and sociodemographic correlates of conduct disorder. American Journal of Social Psychiatry, 6, 272–278.Google Scholar
  48. Olweus, D. (1979). Stability of aggressive reaction patterns in males: A review. Psychological Bulletin, 86, 852–875. Patterson, G. R., Reid, J. B., & Dishion, T. J. (1992). Antisocial boys. Eugene, OR: Castalia.Google Scholar
  49. Raleigh, M. J., & McGuire, M. T. (1994). Serotonin, aggression, and violence in vervet monkeys. In R. D. Masters & M. T. McGuire (Eds.), The neurotransmitter revolution (pp. 129–145). Carbondale: Southern Illinois University Press.Google Scholar
  50. Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., & Yuwiler, A. (1991). Serotonergic mechanisms promote dominance acquisition in vervet monkeys. Brain Research, 559, 181–190.PubMedCrossRefGoogle Scholar
  51. Reiss, A. J., & Roth, J. A. (1993). Understanding and preventing violence. Washington, DC: National Academy Press.Google Scholar
  52. Rosenblum, L. A., Copian, J. D., Friedman, S., Bassoff, T., Gorman, J. M., & Andrews, M. W. (1994). Adverse early experiences affect noradrenergic and serotonergic functioning in adult primates. Biological Psychiatry, 35, 221–227.PubMedCrossRefGoogle Scholar
  53. Rubin, K., & Rose-Krasnor, L. (1992). Interpersonal problem-solving and social competence in children. In V. Van Hasselt & M. Hersen (Eds.), Handbook of social development: A lifespan perspective (pp. 117–144). New York: Plenum Press.Google Scholar
  54. Ruppenthal, G. C, Arling, G. L., Harlow, H. F., Sackett, G. P., & Suomi, S. J. (1976). A 10-year perspective on motherless mother monkey mothering behavior. Journal of Abnormal Psychology, 88, 341–349.CrossRefGoogle Scholar
  55. Rutter, M., Giller, H., & Hagel, A. (1998). Antisocial behaviour by young people. Cambridge, UK: Cambridge University Press.Google Scholar
  56. Rutter, M., Silberg, J., O’Conner, T., & Simonoff, E. (1999). Genetics and child psychiatry: II. Empirical research findings. Journal of Child Psychology and Psychiatry, 40, 19–56.PubMedCrossRefGoogle Scholar
  57. Sackett, G. P., Sameroff, A. S., Cairns, R. B., & Suomi, S. J. (1981). Continuity in behavioral development: Theoretical and empirical issues. In K. Immelmann, G. W. Barlow, L. Petrinovich, & M. Main (Eds.), Behavioral development: The Bielefeld interdisciplinary project (pp. 395–431). New York: Cambridge University Press.Google Scholar
  58. Schneider, M. L., Moore, C. E, Suomi, S. J., & Champoux, M. (1991). Laboratory assessment of temperament and environmental enrichment in rhesus monkey infants (Macaca mulatta). American Journal of Primatology, 25, 137–155.CrossRefGoogle Scholar
  59. Shivley, C. A., Fontenot, M. B., & Kaplan, J. R. (1995). Social status, behavior, and central serotonergic responsibility in female cynomolgus monkeys. American Journal of Primatology, 37, 333–340.CrossRefGoogle Scholar
  60. Sibley, C. O., Comstock, J. A., & Alquist, J. E. (1990). DNA hybridization evidence of hominid phylogeny: A reanalysis of the data. Journal of Molecular Evolution, 30, 202–236.PubMedCrossRefGoogle Scholar
  61. Suomi, S. J. (1982). Animal models of human psychopathology: Relevance for clinical psychology. In P. Kendall & J. Butcher (Eds.), Handbook of research methods in clinical psychology (pp. 249–271). New York: Wiley.Google Scholar
  62. Suomi, S. J. (1986). Anxiety-like disorders in young primates. In R. Gittelman (Ed.), Anxiety disorders of childhood (pp. 1–23). New York: Guilford Press.Google Scholar
  63. Suomi, S. J. (1995). Influence of Bowlby’s attachment theory on research on nonhuman primate biobehavioral development. In S. Goldberg, R. Muir, & J. Kerr (Eds.), Attachment theory: Social, developmental, and clinical perspectives (pp. 185–201). Hillsdale, NJ: Analytic Press.Google Scholar
  64. Suomi, S. J. (1997). Early determinants of behaviour: Evidence from primate studies. British Medical Bulletin, 53, 170–184.PubMedCrossRefGoogle Scholar
  65. Suomi, S. J. (1999). Developmental trajectories, early experiences, and community consequences: Lessons from studies with rhesus monkeys. In D. Keating & C. Hertzman (Eds.), Developmental health: The wealth of nations in the Information Age (pp. 185–200). New York: Guilford Press.Google Scholar
  66. Suomi, S. J., & Immelmann, K. (1983). On the product and process of cross-species generalization. In D. W. Rajecki (Ed.), Studying man studying animals (pp. 203–223). New York: Plenum Press.Google Scholar
  67. Suomi, S. J., & Levine, S. (1998). Psychobiology of intergenerational effects of trauma: Evidence from animal studies. In Y. Daniele (Ed.), International handbook of multigenerational legacies of trauma (pp. 623–637). New York: Plenum Press.CrossRefGoogle Scholar
  68. Tremblay, R. E. (1992). The prediction of delinquent behavior from childhood behavior: Personality theory revisited. In J. McCord (Ed.), Facts,frameworks, and forecasts: Advances in criminological theory (Vol. 3, pp. 192–230). New Brunswick, NJ: Transactions.Google Scholar
  69. Tremblay, R. E., Japel, C., Perusse, D., Boivin, M., Zoccolillo, M., Montplaisir, J., & McDuff, E (in press). The search for the age of onset of physical aggression: Rousseau and Bandura revisited. Criminal Behavior and Mental Health. Google Scholar
  70. Tsai, T., Lindell, S. G., Shannon, C., & Higley, J. D. (1998). Aggression to infants and maternal competence by female rhesus monkeys with low CNS serotonin functioning. American Journal of Primatology, 45, 211.Google Scholar
  71. Westergaard, G. T., Mehlman, P. T., Suomi, S. J., & Higley, J. D. (in press). CSF 5-HIAA and aggression in female primates: Species and interindividual differences. Biological Psychiatry. Google Scholar
  72. Zajicek, K., Higley, J. D., Suomi, S. J., & Linnoila, M. (1997). Rhesus macaques with high CSF 5-HIAA concentrations exhibit early sleep onset. Psychiatric Research,77, 15–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Stephen J. Suomi
    • 1
  1. 1.Laboratory of Comparative EthologyNational Institute of Child Health & Human DevelopmentBethesdaUSA

Personalised recommendations