Skip to main content

Impact of Coal Pile Leachate and Fly Ash on Soil and Groundwater

  • Chapter

Abstract

Six samples of crude coal and fly ash were collected from the D-Area electric power plant of U.S. Department of Energy (DOE) at Savannah River Site to determine their chemical composition for the purpose of safe disposal. Groundwater samples were also collected from five monitoring wells near the coal pile to determine water characteristics as affected by the coal pile leachate. Concentrations of metals, phosphorus and boron were determined in the coal, fly ash samples. Groundwater samples were analyzed for pH, dissolved oxygen (DO), and concentrations of metals, total organic carbon (TOC), sulfate, chloride, nitrate and acetate. Fly ash samples had higher concentrations of major and trace elements including some toxic elements than crude coal. Weathered ash had much lower concentrations of most elements, B was completely removed, and was considered safe for field application. Groundwater leached from the coal pile contained high concentrations of sulfate, Fe and Al and had low DO and an acidic pH with high redox potential. Attenuation of coal pile leachate contaminants occurred in the surrounding subsoil both vertically and laterally. Most contaminants were removed in the vicinity of coal pile and lower contamination was observed in the distant wells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, E. C., and Boegly, W. J., Jr., A review of water quality issues associated with coal storage, J. Environ. Qual., 10, 127, 1981.

    Article  Google Scholar 

  2. Gordon, R. L., The hobgoblin of coal: Policy and regulatory uncertainties, Science, 200, 53, 1978.

    Article  Google Scholar 

  3. Swift, M. C., Water Resources Bull., 21, 449, 1985.

    Article  Google Scholar 

  4. Anderson, W. C., and Youngstrom, M. P., J Env. Eng. Div, Am. Soc. Civ. Eng., 102, 1239, 1976.

    Google Scholar 

  5. Carlson, C. A., Subsurface leachate migration from a reject coal pile in South Carolina, Water, Air, and Soil Pollution, 53, 345, 1990.

    Article  Google Scholar 

  6. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C., and Straughan, I. R., Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A Review, J Environ. Qual., 9, 333, 1980.

    Article  Google Scholar 

  7. Anon., Savannah River Laboratory Report, Part II, E.I. Dupont de Nemours and Company, Wilmington, DE, 1986, 59.

    Google Scholar 

  8. Klein, D. H., Andren, A. W., and Bolton, N. E., Trace element discharges from coal combustion for power generation, Water, Air and Soil Pollution, 5, 71, 1975.

    Article  Google Scholar 

  9. Davison, R. L., Natusch, D. E. S., Wallace, J. R., and Evans, C. A., Jr., Trace elements in fly ash: Dependence on concentration of particle size, Environ. Sci. Technol, 8, 1107, 1974.

    Article  Google Scholar 

  10. Adriano, D. C., Woodford, T. A., and Ciravolo, T. C., Growth and elemental composition of corn and bean seedlings of coal ash, J. Environ. Qual., 7, 416, 1978.

    Article  Google Scholar 

  11. Hodgson, D. R., and Holliday, R., The agronomic properties of pulverized fuel ash, Chem. Ind., 1966, 785.

    Google Scholar 

  12. Bolch, W E., Jr., Solid waste and trace element impact. In: Green, A. E. S. (Ed.), Coal Burning Issues, University Press of Florida, Gainesville, Chapter 12, 231, 1980.

    Google Scholar 

  13. Natusch, D. F. S., Bauer, C. F., Matusiewicz, H., Evans, C. A., Baker, J., Loh, A., Linton, R. W., and Hopke, R. K., Characterization of trace elements in fly ash. In: Hutchison, T. E. (Ed.), Proc. Int. Conf On Heavy Metals in Environ., Toronto, Ontario, Canada, 27–31 Oct., Vol. 2, 553, 1975.

    Google Scholar 

  14. Bern, J., Residues from power generation: Processing, recycling and disposal, In: Land Application of Waste Materials, Soil Conserv. Soc. Am., Ankeny, Iowa, 226, 1976.

    Google Scholar 

  15. Furr, A. K., Parkinson, T. F., Hinrichs, R. A., Van Campen, D. R., Bache, C. A., Guttenmann, W. H., St. John, L. E. Jr, Pakkala, I. S., and Lisk, D. J., National survey of elements and radioactivity in fly ashes: Adsorption of elements by cabbage grown in fly ash-soil mixtures, Environ. Sci. Technol., 11, 1104, 1977.

    Article  Google Scholar 

  16. Page, A. L., Elseewi, A. A., and Straughan, I., Physical and chemical properties of fly ash from coal-fired with reference to environmental impacts, Residue Review, 71, 83, 1979.

    Article  Google Scholar 

  17. Plank, C. O., and Martens, D. C., Boron availability as influenced by application of fly ash to soil, Soil Sci. Soc. Ani. Proc., 38, 974, 1974.

    Google Scholar 

  18. Page, A. L., Bingham, E T., Lund, L. J., Bradford, G. R., and Elseewi, A. A., Consequences of trace element enrichment of soils and vegetation from the combustion of fuels used in power generation, S. Calif Edison Res. and Dei Ser., 77-RD-29, 1977.

    Google Scholar 

  19. Menon, M. E., Ghuman, G. S., James, J., Chandra, K., and Adriano, D. C., Physico-chemical characterization of water extracts of different coal fly ashes and fly ash-amended composts, Water, Air, and Soil Pollution, 50, 343, 1990.

    Article  Google Scholar 

  20. Roy, W. R., and Griffin, R. A., A proposed classification system of coal fly ash in multi disciplinary research, J. Environ. Qual., 11, 563, 1982.

    Article  Google Scholar 

  21. Dudas, M. J., Long-term leachability of selected elements from fly ash, Environ. Sci. Technol., 15, 840, 1981.

    Article  Google Scholar 

  22. Linton, R. W., Loh, A., Natusch, D. E. S., Evans, C. A., Jr., and Williams, P., Surface predominance of trace elements in air-borne particles, Science, 191, 852, 1975.

    Article  Google Scholar 

  23. Block, C., Dams, R., and Hoste, J., Chemical composition of coal fly ash. p. 101, In: Proc. Int. Svmp. on Development of Nuclear-based Techniques for the Measurement, Detection and Control of Environmental Pollutants, IAEA-SM-206/8, Vienna, 1976.

    Google Scholar 

  24. Campbell, J. A., Laul, J. C., Nielsen, K. K., and Smith, R. D., Separation and chemical characterization of finely-sized fly ash particles, Anal. Chem., 50, 1032, 1978.

    Google Scholar 

  25. Lee, R. E., Jr., Crist, H. L., Riley, A. E., and MacLeod, K. E., Concentration and size of trace metal emissions from a power plant, a steel plant, and a cotton gin, Environ. Sci. Technol., 9, 643, 1975.

    Article  Google Scholar 

  26. Page, A. L., Elseewi, A. A., and Straughan, I., Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts, Residue Rev., 71, 83, 1979.

    Article  Google Scholar 

  27. Bertine, K. K., and Goldberg, E. D., Fossil fuel combustion and the major sedimentary cycle, Science, 173, 23, 1971.

    Article  Google Scholar 

  28. Vandergrift, A. E., Shannon, L. J., Gorman, R. G., Lawless, E. W., Sallee, E. E., Reichel, M., Particulate pollutant study, Vol. I, Mass emissions, Rep. No. ADTP-0743, Mid-WestRes. Inst. Kansas City, Mo. 384p., 1971

    Google Scholar 

  29. Natusch, D. E. S., Jr., Wallace, J. R., and Evans, C. A., Jr., Toxic trace elements: Preferential concentration in respirabel particles, Science, 183, 202, 1974.

    Article  Google Scholar 

  30. Natusch, D. F. S., and Wallace, J. R., Urban aerosol toxicity: The influece of particle size, Science, 186, 695, 1974.

    Article  Google Scholar 

  31. Chang, A. C., Lund, L. J., Page, A. L., and Warneke, J. E., Physical properties of fly ash-amended soils, J. Environ. Qual., 6, 267, 1977.

    Article  Google Scholar 

  32. Phung, H. T., Lund, L. J., and Page, A. L., Potential use of fly ash as a liming material, In: Adriano, D. C., and Brisbin, I. L. (Eds.), Environmental Quality and Cycling Processes, CONF-760–429, U.S. Dept. Commerce, Springfield, VA., p. 504, 1978.

    Google Scholar 

  33. Elseewi, A. A., Bingham, E T., and Page, A. L., Growth and mineral composition of lettuce and Swiss chard grown on fly ash-amended soils, In: Adriano, D. C., and Brisbin, I. L. (Eds.), Environmental Chemistry and cycling Processes, CONF-760–429, U.S. Dept. Springfield, Commerce, VA., p. 568, 1978.

    Google Scholar 

  34. Schnappinger, M. G., Jr., Martens, D. C., and Plank, C. O., Zinc availability as influenced by application of fly ash to soil, Environ. Sci. Technol., 9, 258, 1975.

    Article  Google Scholar 

  35. Sims, J. T., Vasilas, B. L., and Ghodrati, M., Evaluation of fly ash as a soil amendment for the Atlantic coastal plain: Soil chemical properties and crop growth, Water, Air; and Soil Pollution, 81, 363, 1995.

    Article  Google Scholar 

  36. Adriano, D. C., Page, A. L., Elseewi, A. A., and Chang, A. C., Cadmium availability to sudan grass grown on soils amended with sewage sludge and fly ash, J. Environ. Qual., 11, 197, 1982.

    Article  Google Scholar 

  37. Singh, R. N., Keefer, R. F., Ghazi, H. E., and Horvath, D. J., Evaluation of plant growth and chemical properties of mine soils following application of fly ash and organic waste materials, In: Hallow, J. S., and Corey, N. J. (Eds.), The Challenges of Change, 6th International Ash Utilization Symposium Proceedings, Morgantown, WV, p. 79, 1982.

    Google Scholar 

  38. Pietz, R. I., Carlson, C. R., Jr., Peterson, J. R., Denz, D. R., and Lue-Hing, C., Application of sewage sludge and other amendments to coal refuse material: I. Effects on chemical composition, J. Environ. Qual., 18, 164, 1989.

    Article  Google Scholar 

  39. Pietz, R. I., Carlson, C. R., Jr., Peterson, J. R., Denz, D. R., and Lue-Hing, C., Application of sewage sludge and other amendments to coal refuse material: II. Effects on Revegetation, J. Environ. Qual., 18, 169, 1989.

    Article  Google Scholar 

  40. Anderson, M. A., Bertsch, P. M., Feldman, S. B., and Zealanzy, L. W., Interaction of acidic metal-rich coal pile runoff with a subsoil, Environ. Sci. Technol., 25(12), 20–38, 1991.

    Article  Google Scholar 

  41. Carlson, C. L., and Carlson, C. A., Impacts of coal leachate on a forested wetland in South Carolina, Water, Air, and Soil Pollution, 72, 89, 1994.

    Article  Google Scholar 

  42. Ghuman, G. S., and Denham, M. E., Attenuation of contaminants of coal pile leachate by interaction with subsoil, Georgia J. Sci., 54(1), 46, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghuman, G.S., Sajwan, K.S., Denham, M.E. (1999). Impact of Coal Pile Leachate and Fly Ash on Soil and Groundwater. In: Sajwan, K.S., Alva, A.K., Keefer, R.F. (eds) Biogeochemistry of Trace Elements in Coal and Coal Combustion Byproducts. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4155-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4155-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6864-9

  • Online ISBN: 978-1-4615-4155-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics