Estimation Of Kolmogorov Constant C0 From Sonic Anemometer Measurements In The Atmospheric Surface Layer

  • D. Anfossi
  • S. Trini Castelli
  • G. Degrazia
  • E. Ferrero
  • S.-E. Gryning
  • M. G. Morselli


In the inertial subrange the Lagrangian velocity structure function
$$ D_i^L(\tau ) = \left\langle {{{\left[ {{u_i}(t + \tau ) - {u_i}(t)} \right]}^2}} \right\rangle \quad i = u,v,w $$
is defined, according to the Kolmogorov hypothesis (Monin and Yaglom, 1975), as:
$$ D_i^L(\tau ) = {C_0}\;\varepsilon \;\tau , $$
where C0 is a numerical constant and ɛ is the ensemble-average rate of dissipation of turbulent kinetic energy.


Sonic Anemometer Atmospheric Surface Layer Inertial Subrange Lagrangian Stochastic Model Turbulent Kinetic Energy Dissipation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anand M.S. and Pope S.B. (1985) Diffusion behind a line source in a grid turbulence. Turbulent Shear Flows, 4, edited by L.J.S. Bradbury, F. Durst, B.E. Lauder, F.W. Schmidt and J.H. Whitelaw. Springer-Verlag, Berlin, 46–61CrossRefGoogle Scholar
  2. Batchelor G.K.: 1949, ‘Diffusion in a field of homogeneous turbulence, I: Eulerian analysis. Aust. J. Sci. Res., 2, 437–450Google Scholar
  3. Caughey S.J.and Palmer S.G. (1979) Some aspects of turbulence structure throught the depth of the convective boundary layer.Quart. J. Roy. Met. Soc, 105, 811–827CrossRefGoogle Scholar
  4. Champagne F.H., Friehe J.C., La Rue J.C. and Wyngaard J.C. (1977) Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci., 34, 515–530CrossRefGoogle Scholar
  5. Degrazia G.A., Moraes O.L.L., and Oliveira A.P. (1996) An analytical method to evaluate mixing length scales for the Planetary Boundary Layer. J. Appl. Meteor., 35, 974–977CrossRefGoogle Scholar
  6. Degrazia G.A., Anfossi D., Fraga De Campos Velho H. and Ferrero E. (1998) A Lagrangian decorrelation time scale for non-homogeneous turbulence. Boundary-Layer Meteorology, 86, 525–534CrossRefGoogle Scholar
  7. Degrazia G.A. and Anfossi D. (1998) Estimation of the Kolmogorov constant C0 from classical statistical diffusion theory’. In press on Atmospheric EnvironmentGoogle Scholar
  8. Du S. (1997) Universality of the Lagrangian velocity structure function constant C0 across different kinds or turbulence. Boundary-Layer Met., 83, 207–219CrossRefGoogle Scholar
  9. Kaimal J.C. and Finnigan J.J.: 1994, ‘Atmospheric boundary layer flows’, Oxford University Press, 289 pp Hanna S.R. (1981) Lagrangian and Eulerian time-scale i the daytime boundary layer. J. Appl. Meteor., 20, 242–249Google Scholar
  10. Hinze J.O. (1975) Turbulence, Mc Graw Hill, 790 ppGoogle Scholar
  11. Kaimal J.C., Wyngaard J.C., Haugen D.A., Cote’ O.R., Izumi Y., Caughey S.J. and Readings C.J. (1976) Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169CrossRefGoogle Scholar
  12. Monin A.S. and Yaglom A.M. (1975) Statistical fluid mechanics: Mechanics of turbulence’ Nieuwstadt F.T.M. (1984) The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci., 41, 2202–2216Google Scholar
  13. Pasquill F. (1974) Atmospheric diffusion’, Wiley, 429 ppGoogle Scholar
  14. Rodean H.C. (1994) Notes on the Langevin model for turbulent diffusion of “marked” particles, UCRL-ID-115869 Report of Lawrence Livermore National Laboratory, 122 ppGoogle Scholar
  15. Sawford B.L. (1991) Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids, A3, 1577–1566Google Scholar
  16. Sorbjan Z. (1986) Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Boundary-Layer Met., 35, 257–275CrossRefGoogle Scholar
  17. Sorbjan Z. (1989) Structure of the atmospheric boundary layer. Prentice Hall, New JersyGoogle Scholar
  18. Taylor G.I. (1921) Diffusion by continuous movements. Proc. London Math. Soc, Ser. 2, 20, 196–211Google Scholar
  19. Tennekes H. (1982) Similarity relations, scaling laws and and spectral dynamics In: Atmospheric turbulence and air pollution modelling (edited by F.T.M. Nieuwstadt and H. van Dop), Reidel, Dordrecht, 37–68Google Scholar
  20. Thomsen A., Barring L., Gryning S.E., Sogaard H and Thorgeirsson H. (1994) Data Report for the NOPEX Tisby site — Concentrated field effort #1, May 27-June 23, 1994Google Scholar
  21. Wandel C.F. and Kofoed-Hansen O. (1962) On the Eulerian-Lagrangian transform in the statistical theory of turbulence. J. Geophys. Res., 76, 3089–3093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • D. Anfossi
    • 1
  • S. Trini Castelli
    • 1
  • G. Degrazia
    • 2
  • E. Ferrero
    • 3
  • S.-E. Gryning
    • 4
  • M. G. Morselli
    • 5
  1. 1.CNR-Istituto di CosmogeofisicaTorinoItaly
  2. 2.Universidade Federal de Santa MariaBrasil
  3. 3.Universita’, Dip. Scienze Teen. Avanz.AlessandriaItaly
  4. 4.RISO National LaboratoryRoskildeDenmark
  5. 5.ENEL-Polo AmbienteMilanoItaly

Personalised recommendations