Prospects and Progress in Ellagitannin Synthesis

  • Ken S. Feldman
  • Kiran Sahasrabudhe
  • Stéphane Quideau
  • Kendra L. Hunter
  • Michael D. Lawlor
Part of the Basic Life Sciences book series (BLSC, volume 66)


The ellagitannin family of secondary plant metabolites presents a rich array of challenges for contemporary organic synthesis. The myriad intra- and inter-molecular coupling modes available to galloyl rings appended to a glucose core, along with a range of post-coupling modifications, define a vast matrix of bond-forming possibilities, many of which are represented within the 500+ structurally characterized members.1–4 A heightened interest in this class of natural products is fueled by recent observations that several ellagitannins display remarkable levels of activity in various anticancer and antiviral assays and hence may serve as promising leads for development of novel therapeutics.3,5–7 Progress toward that goal will benefit from access to significant quantities of natural material as well as designed analogs for delineation of structure/activity profiles and elucidation of biological mechanism-of-action. These latter goals, and possibly the former goal as well, can only be met through a program of total chemical synthesis.


Ellagic Acid Oxidative Coupling Ether Synthesis Hydrolyzable Tannin Plant Polyphenol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haslam, E. Plant polyphenols—vegetable tannins revisited. Cambridge University Press, Cambridge, (1989).Google Scholar
  2. 2.
    Haslam, E.; Cai, Y. Plant polyphenols (vegetable tannins*): gallic acid metabolism. Nat. Prod. Reports:41 (1994).Google Scholar
  3. 3.
    Berlinck, R.G.S.; Hatano, T.; Okuda, T.; Yoshida, T. Hydrolyzable tannins and related polyphenols. In: Herz, W.; Kirby, G.W.; Moore, R.E.; Steglich, W.; Tamm, Ch. (eds.). Progress in the chemistry of organic natural products. Springer-Verlag, New York, p.1 (1995).Google Scholar
  4. 4.
    Quideau S.; Feldman K.S. Ellagitannin chemistry. Chem. Rev. 96:475 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    Okuda, T.; Yoshida, T.; Hatano, T. Chemistry and biological activity of tannins in medicinal plants. In: Wagner, H.; Farnsworth, N.R. (eds.) Economic and medicinal plant research, v.5. Plants and traditional medicines. Academic Press Ltd., London, p.129 (1991).Google Scholar
  6. 6.
    Okuda, T.; Yoshida, T.; Hatano, T. Polyphenols from Asian plants. In: Huang, M.-T., Ho; C-T.; Lee, C.Y. (eds.) Phenolic compounds in food and their effects on health II. American Chemical Society, Washington, p. 160 (1992).CrossRefGoogle Scholar
  7. 7.
    Okuda, T.; Yoshida, T.; Hatano, T. Pharmacologically active tannins isolated from medicinal plants. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols: synthesis, properties, significance. Plenum Press, New York, p. 539 (1992).Google Scholar
  8. 8.
    Nonaka G-I.; Nakayama S.; Nishioka I. Tannins and related compounds. LXXXIII. Isolation and structures of hydrolyzable tannins, Phillyraeoidins A-E from Quercus phillyraeoides. Chem. Pharm. Bull. 37:2030 (1989).CrossRefGoogle Scholar
  9. 9.
    Okuda T.; Hatano T.; Ogawa N.; Kira R.; Matsuda M. Cornusiin A, a dimeric ellagitannin forming four tautomers, and accompanying new tannins in Cornus officinalis. Chem. Pharm. Bull. 32:4662 (1984).CrossRefGoogle Scholar
  10. 10.
    Okuda T.; Hatano T.; Yazaki K.; Ogawa N. Rugosin A, B, C and praecoxin A, tannins having a valoneoyl group. Chem. Pharm. Bull. 30:4230 (1982).CrossRefGoogle Scholar
  11. 11.
    Hatano T.; Hattori S.; Okuda T. Tannins of Coriaria japonica A. GREY. I. Coriariins A and B, new dimeric and monomeric hydrolyzable tannins. Chem. Pharm. Bull. 34:4092 (1986).CrossRefGoogle Scholar
  12. 12.
    McDonald, P.D.; Hamilton, G.A. Mechanisms of phenolic oxidative coupling reactions. In: Trahanovsky, W.S. (ed.) Oxidation in organic chemistry, v.5. Academic Press, New York, p.97 (1973).Google Scholar
  13. 13.
    Mohamadi F.; Richards N.G.J.; Guida W.C.; Liskamp R.; Lipton M.; Caufield C.; Chang G.; Hendrickson T.; Still W.C. MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11:440 (1990).CrossRefGoogle Scholar
  14. 14.
    Yoshida T.; Nakata F.; Hosotani K.; Nitta A.; Okuda T. Dimeric hydroysable tannins from Melastoma malabathricum. Phytochemistry 31:2829 (1992).CrossRefGoogle Scholar
  15. 15.
    Löwe, J.F.F.F. Über die Bildung von Ellagsäure aus Gallussäure. Z. Chem. 4:603 (1868).Google Scholar
  16. 16.
    Grießsmayer, V. Über das Verhalten von Stärke und Dextrin gegen Jod und Gerbsäure. Ann. 160:40 (1871).Google Scholar
  17. 17.
    Perkin, A.G.; Nierenstein, M. Some oxidation products of the hydroxybenzoic acids and the constitution of ellagic acid. Part 1. J. Chem. Soc. 87:1412 (1905).Google Scholar
  18. 18.
    Erdtman H. Phenoldehydrierungen VI. Dehydrierende kupplung einiger guajakolderivate. Svensk. Kern. Tidskr. 47:223 (1935).Google Scholar
  19. 19.
    Hathway, D.E. Autoxidation of polyphenols. Part 1._Autoxidation of methyl gallate and its O-methyl ethers in aqueous ammonia. J. Chem. Soc.:519 (1957).Google Scholar
  20. 20.
    Jurd L. Plant polyphenols. VI Experiments on the synthesis of 3, 3′-and 4,4′-di-O-methylellagic acid. J. Am. Chem. Soc. 81:4606 (1959).CrossRefGoogle Scholar
  21. 21.
    Szarkowski J.W.; Golaszewski T. Uber die Bildung der Ellagsäure durch UV-Strahlen. Naturwissenschaften 48:457 (1961).CrossRefGoogle Scholar
  22. 22.
    Gupta R.K.; Al-Shafi S.M. K.; Layden K.; Haslam E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2._Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J. Chem. Soc., Perkin Trans. 1:2525 (1982).CrossRefGoogle Scholar
  23. 23.
    Mayer, W.; Hoffmann, E.H.; Losch, N.; Wolf, H.; Wolter, B.; Schilling, G. Dehydrierungsreaktionen mit Gallussäureestern. Ann.:929 (1984).Google Scholar
  24. 24.
    Grimshaw, J.; Haworth, R.D. Flavogallol. J. Chem. Soc.:4225 (1956).Google Scholar
  25. 25.
    Nelson T.D.; Meyers A.I. A rapid total synthesis of an ellagitannin. J. Org. Chem. 59:2577 (1994).CrossRefGoogle Scholar
  26. 26.
    Lipshutz B.H.; Liu Z.-P; Kayser F. Cyanocuprate-mediated intramolecular biaryl couplings applied to an ellagitannin. Synthesis of (+)-O-permethyltellimagrandin II. Tetrahedron Lett 35:5567 (1994).CrossRefGoogle Scholar
  27. 27.
    Critchlow A.; Haslam E.; Haworth R.D.; Tinker P.B.; Waldron N.M. The oxidation of some pyrogallol and purpurogallin derivatives. Tetrahedron 23:2829 (1967).PubMedCrossRefGoogle Scholar
  28. 28.
    Horner L.; Durckheimer W.; Weber K.-H.; Dolling K. Synthese, Struktur und eigen-schaften von l′.2′-dihydroxy-6.7-benzotropolonen. Chem. Ber. 97:312 (1964).CrossRefGoogle Scholar
  29. 29.
    Schmidt O.Th.; Mayer W. Natürliche Gerbstoffe. Angew. Chem. 68:103 (1956).CrossRefGoogle Scholar
  30. 30.
    Blumenfeld S.; Friedlander P. Allgemeine Reaktionen Aromatischer Chinone. Chem. Ber. 30:2563 (1897).CrossRefGoogle Scholar
  31. 31.
    Pfundt, G.; Schenk, G.O. Cycloadditions to o-quinones, 1, 2-diketones and some of their derivatives. In: Hamer, J. (ed.) 1,4-Cycloaddition reactions. The Diels Alder reaction in het-erocycle synthesis. Academic Press, New York, p. 345 (1967).Google Scholar
  32. 32.
    Ansell, M.F.; Gosden, A.F.; Leslie, V.J.; Murray, R.A. The reactions of o-benzoquinones with cyclopentadiene. J. Chem. Soc. (C).:1401 (1971).Google Scholar
  33. 33.
    Lee J.; Snyder J.K. Ultrasound promoted cycloadditions in the synthesis of Salvia Militiorrhiza abietanoid o-quinones. J. Org. Chem. 55:4995 (1990).CrossRefGoogle Scholar
  34. 34.
    Waldron, N.M. The constitution of the dimers of 4,5-di-t-butyl-3-hydroxy-o-benzoquinone and 5-t-butyl-3-hydroxy-o-benzoquinone. J. Chem. Soc. (C):1914 (1968).Google Scholar
  35. 35.
    Vol’era, V.B.; Khristyuk A.L.; Zhorin V.A.; Arhipov I.L.; Stukan R.A.; Ershov V.V.; Enikolopyan N.S. Conversion of 3,6-di-tert-butylorthobenzoquinone in Bridgeman presses. Izv. Akad. Nauk SSSR, Ser. Khim. 33:443 (1984) (Engl. Trans.).Google Scholar
  36. 36.
    Schmidt O.Th.; Wieder G. Zur Synthese der “Dehydro-hexahydroxy-diphensäure”. Ann. 706:198 (1967).Google Scholar
  37. 37.
    Horner L.; Dürckheimer, W. Die Konfiguration der dimeren o-Benzochinone und das Prinzip des geringsten Gesamtmoments für die Anordnung der Reaktionspartner in Orientierungskomplexen. Chem. Ber. 95:1219 (1962).CrossRefGoogle Scholar
  38. 38.
    Magnusson R.; Alder E. Periodate oxidation of phenols. Acta Chem. Scand. 13:505 (1959).CrossRefGoogle Scholar
  39. 39.
    Müller, E.; Bayer, O. Chinone, Teil II. In: Grundmann, C. (ed.) Methoden der Organischen Chemie (Houben-Weyl). Georg Thieme, Stuttgart, p. 139 (1979).Google Scholar
  40. 40.
    Feldman K.S.; Ensel S.M. Ellagitannin chemistry. The first example of biomimetic diastereoselective oxidative coupling of a glucose-derived digalloyl substrate. J. Am. Chem. Soc. 115:1162 (1993).CrossRefGoogle Scholar
  41. 41.
    Feldman K.S.; Ensel S.M. Ellagitannin chemistry. Preparative and mechanistic studies of the biomimetic oxidative coupling of galloyl esters. J. Am. Chem. Soc. 116:3357 (1994).CrossRefGoogle Scholar
  42. 42.
    Bubb, W.A.; Sternhell, S. The Wessely oxidation. Tetrahedron Lett.:4499 (1970).Google Scholar
  43. 43.
    Itoh, T.; Chika, J.-I.; Shirakami, S.; Ito, H.; Yoshida, T.; Kubo, Y.; Uenishi, J.-I. J. Org. Chem. 61:3700 (1996).PubMedCrossRefGoogle Scholar
  44. 44.
    Khanbabaee K.; Schulz C.; Lotzerich K. Synthesis of enantiomerically pure strictinin using a stereoselective esterification reaction. Tetrahedron Lett. 38:1367 (1998).CrossRefGoogle Scholar
  45. 45.
    Feldman K.S.; Kirchgessner K.A. Probing ellagitannin stereochemistry: the rotational barrier of a model (4,6)-hexamethoxydiphenoyl glucopyranoside. Tetrahedron Lett. 38:7981 (1997).CrossRefGoogle Scholar
  46. 46.
    Feldman, K.S.; Ensel, S.M.; Minard, R.M. Ellagitannin chemistry. The first total chemical synthesis of an ellagitannin natural product, tellimagrandin 1. J. Am. Chem. Soc. 116:1742 (1994).CrossRefGoogle Scholar
  47. 47.
    Feldman, K.S.; Sahasrabudhe, K. Ellagitannin chemistry. Syntheses of tellimagrandin II and a dehydrodigalloyl ether-containing dimeric ellagitannin analog of coriariin A. J. Org. Chem. 63: (1999), in press.Google Scholar
  48. 48.
    Feldman K.S.; Sambandam A. Ellagitannin chemistry. The first total chemical synthesis of an O(2), O(3)-galloyl-coupled ellagitannin, sanguiin H-5._J. Org. Chem. 60:8171 (1995).Google Scholar
  49. 49.
    Feldman K.S.; Smith R.S. Ellagitannin chemistry. First total synthesis of the 2,3-and 4,6-coupled ellagitannin pedunculagin. J. Org. Chem. 61:2606 (1996).PubMedCrossRefGoogle Scholar
  50. 50.
    Feldman K.S.; Hunter K.L. On the basis for regioselective oxidation within a tetragalloylpyranose substrate. Tetrahedron Lett. 39:8943 (1998).CrossRefGoogle Scholar
  51. 51.
    Cozzi F.; Cinquini M.; Annunziata R.; Dwyer T.; Siegel J.S. Polar/πinteractions between stacked aryls in 1,8-diarylnaphthylenes. J. Am. Chem. Soc. 114:5729 (1992).CrossRefGoogle Scholar
  52. 52.
    Cozzi F.; Cinquini M.; Annuziata R.; Siegel J.S. Dominance of polar/π over charge-transfer effects in stacked phenyl interactions. J. Am. Chem. Soc. 115:5330 (1993).CrossRefGoogle Scholar
  53. 53.
    Quideau S.; Feldman K.S.; Appel H.M. Chemistry of galloyl-derived o-quinones: reactivity toward nucleophiles. J. Org. Chem. 60:4982 (1995).CrossRefGoogle Scholar
  54. 54.
    Feldman K.S.; Quideau S.; Appel H.M. Galloyl-derived orthoquinones as reactive partners in nucleophilic additions and Diels-Alder dimerizations: a novel route to the dehydrodigalloyl linker unit of agrimoniin-type ellagitannins. J. Org. Chem. 61:6656 (1996).PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshida T.; Maruyama T.; Nitta A.; Okuda T. Eucalbanins A, B, and C, monomeric and dimeric hydrolyzable tannins from Eucalyptus alba REINW. Chem. Pharm. Bull. 40:1750 (1992).CrossRefGoogle Scholar
  56. 56.
    Quideau S.; Feldman K.S. Ellagitannin chemistry. The first synthesis of dehydrohexahy-droxydiphenoate esters from oxidative coupling of unetherified methyl gallate. J. Org. Chem. 62:8809 (1997).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 1999

Authors and Affiliations

  • Ken S. Feldman
    • 1
  • Kiran Sahasrabudhe
    • 1
  • Stéphane Quideau
    • 2
  • Kendra L. Hunter
    • 1
  • Michael D. Lawlor
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Laboratoire de Chimie des Substances VégétalesInstitut du Pin—Université Bordeaux ITalanceFrance

Personalised recommendations