Condensed Tannins of Salal (Gaultheria shallon Pursh): A Contributing Factor to Seedling “Growth Check” on Northern Vancouver Island?

  • Caroline M. Preston
Part of the Basic Life Sciences book series (BLSC, volume 66)


The west coast of British Columbia, a region of high rainfall and mild climate, is noted for large areas of old-growth temperate rainforest. Logging operations starting on northern Vancouver Island during the 1960s generated large cutover areas with poor regeneration and slow growth of seedlings, concern for which stimulated research into forest ecology, harvesting practices, and silviculture. For over a decade, research has been coordinated and carried out by the umbrella group SCHIRP (Salal-Cedar-Hemlock-Integrated-Research Program).1


Nuclear Magnetic Resonance Spectrum Gaultheria Shallon Condensed Tannin Coarse Woody Debris Humus Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prescott, C.E.; Weetman, G.F. Salai Cedar Hemlock Integrated Research Program: a synthesis, Faculty of Forestry, University of British Columbia, Vancouver (1994).Google Scholar
  2. 2.
    de Montigny L.E.; Preston C.M.; Hatcher P.G.; Kögel-Knabner I. Comparison of humus horizons from two ecosystem phases on Northern Vancouver Island using 13C CPMAS NMR spectroscopy and CuO oxidation. Can. J. Soil Sci. 73:9 (1993).CrossRefGoogle Scholar
  3. 3.
    Messier, C Factors limiting early growth of western redcedar, western hemlock and Sitka spruce seedlings on ericaceous-dominated clearcut sites in coastal British Columbia. For. Ecol. Manage. 60:181 (1993).CrossRefGoogle Scholar
  4. 4.
    Messier C.; Kimmins J.P. Above-and below-ground vegetation recovery in recently clearcut and burned sites dominated by Gaultheria shallon in coastal British Columbia. For. Ecol. Manage. 46:275 (1991).CrossRefGoogle Scholar
  5. 5.
    Chang S.X.; Preston C.M.; McCullough K.; Weetman G.F.; Barker J. Effect of understory competition on distribution and recovery of 15N applied to a western red cedar-western hemlock clearcut site. Can. J. For. Res. 26:313 (1996).CrossRefGoogle Scholar
  6. 6.
    Bernier N. Altitudinal changes in humus form dynamics in a spruce forest at the montane level. Plant Soil 178:1 (1996).CrossRefGoogle Scholar
  7. 7.
    de Montigny, L.E.; Weetman, G.F. The effects of ericaceous plants on forest productivity. In: Titus B.D.; Lavigne M.B.; Newton P.F.; Meades W.J. (eds.). The silvics and ecology of boreal spruces. For. Can. Inf. Rep. N-X-271, p. 83 (1990).Google Scholar
  8. 8.
    Titus, B.D.; Sidhu, S.S.; Mallik, A.U. A summary of some studies on Kalmia angustifolia L.: a problem species in Newfoundland forestry. Can. For. Ser. Inf. Rep. N-X-296 (1995).Google Scholar
  9. 9.
    Leake J.R.; Read D.J. The effects of phenolic compounds on nitrogen mobilization by ericoid mycorrhizal systems. Agric. Ecosys. Environ. 29:225 (1989).CrossRefGoogle Scholar
  10. 10.
    Northup R.R.; Dahlgren R.A.; Yu Z. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171:255 (1995).CrossRefGoogle Scholar
  11. 11.
    Handley W.R.C. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth. Plant Soil 15:37 (1961).CrossRefGoogle Scholar
  12. 12.
    Howard P.J.A.; Howard D.M. Ammonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil types. Soil Biol. Biochem. 9:1249 (1993).CrossRefGoogle Scholar
  13. 13.
    Kuiters A.T. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta. Bot. Neerl. 39:329 (1990).Google Scholar
  14. 14.
    Toutain F. Activité biologique des sols, modalités et lithodépendance. Biol. Fert. Soils 3:31 (1987).CrossRefGoogle Scholar
  15. 15.
    Jones W.T.; Broadhurst R.B.; Lyttleton J.W. The condensed tannins of pasture legume species. Phytochemistry 15:1407 (1976).CrossRefGoogle Scholar
  16. 16.
    Preston, C.M.; Trofymow, J.A.; Niu, J.; Fyfe, C.A. 13C CPMAS NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For. Ecol. Manage. 111:51 (1998).CrossRefGoogle Scholar
  17. 17.
    Preston C.M.; Trofymow J.A.; Sayer B.G.; Niu J. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies, Can. J. Bot. 75:1601 (1997).CrossRefGoogle Scholar
  18. 18.
    Tiarks, A.E.; Meier, C.E.; Flagler, R.B.; Steynberg, E.C. Sequential extraction of condensed tannins from pine litter at different stages of decomposition. In: Hemingway R.W.; Laks P.E (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York. p. 597 (1992).Google Scholar
  19. 19.
    Czochanska Z.; Foo L.Y.; Newman R.H.; Porter L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. 7:2278 (1980).CrossRefGoogle Scholar
  20. 20.
    Newman, R.H.; Porter, L.J. Solid-state 13C-NMR studies on condensed tannins. In: Hemingway R.W.; Laks P.E (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York. p. 339 (1992).Google Scholar
  21. 21.
    Preston C.M.; Sollins P.; Sayer B.G. Changes in organic components for fallen logs in old-growth Douglas-fir forests monitored by 13C nuclear magnetic resonance spectroscopy. Can. J. For. Res. 20:1382 (1990).CrossRefGoogle Scholar
  22. 22.
    Preston C.M.; Sayer B.G. What’s in a nutshell: an investigation of structure by carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 40:206 (1992).CrossRefGoogle Scholar
  23. 23.
    Hatcher P.G. Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance. Org. Geochem. 11:31 (1987).CrossRefGoogle Scholar
  24. 24.
    Wilson M.A.; Hatcher P.G. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance. Org. Geochem. 12:539 (1988).CrossRefGoogle Scholar
  25. 25.
    Baidock, J.A.; Preston, C.M. Chemistry of carbon decomposition processes in forests as revealed by solid-state 13C NMR. In: Kelly J.M.; McFee W.W. (eds.) Carbon forms and functions in forest soils, Soil Sci. Soc. Am., Madison, WI, p. 89 (1995).Google Scholar
  26. 26.
    Kögel-Knabner I.; Hatcher P.G.; Tegelaar E.W.; de Leeuw J.W. Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis. Sci. Tot. Environ. 113:89 (1992).CrossRefGoogle Scholar
  27. 27.
    Beck G.; Dommergues Y.; Van den Driessche R. L’effet litière. II. Étude expérimentale du pouvoir inhibiteur des composés hydrosolubles des feuilles et des litières forestières vis-avis de la microflore tellurique. Oecol. Plant. 4:237 (1969).Google Scholar
  28. 28.
    Coulson C.B.; Davies R.I.; Lewis D.A. Polyphenols in plant, humus, and soil I. Polyphenols of leaves, litter, and superficial humus from mull and mor sites. J. Soil Sci. 11:20 (1960).CrossRefGoogle Scholar
  29. 29.
    Nikolai V. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75:575 (1988).CrossRefGoogle Scholar
  30. 30.
    Racon L.; Sadaka N.; Gil G.; le Petit J.; Matheron R.; Poinsot-Balageur N.; Sigoillot J.C.; Woltz P. Histological and chemical changes in tannin compounds of evergreen oak litter. Can. J. Bot. 66:663 (1988).CrossRefGoogle Scholar
  31. 31.
    Schofield J.A.; Hagerman A.E.; Harold A. Loss of tannins and other phenolics from willow leaf litter. J. Chem. Ecol. 24:1409 (1998).CrossRefGoogle Scholar
  32. 32.
    Rice E.L.; Pancholy S.K. Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am. J. Bot. 60:691 (1973).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 1999

Authors and Affiliations

  • Caroline M. Preston
    • 1
  1. 1.Pacific Forestry CentreNatural Resources CanadaVictoriaCanada

Personalised recommendations