Host-Mediated Anticancer Activities of Tannins

  • Ken-ichi Miyamoto
  • Tsugiya Murayama
  • Tsutomu Hatano
  • Takashi Yoshida
  • Takuo Okuda
Part of the Basic Life Sciences book series (BLSC, volume 66)


A number of medicinal plants have been traditionally used for treatment of various ailments, and it has been suggested that tannin may be the active agent of many of them. Among the major activities of tannins found are antioxidant and radical scavenging activities.1,2 These are the basic activities underlying the action of tannin-rich medicinal plants, which are effective in preventing and treating many diseases such as arteriosclerosis, heart dysfunction, and liver injury by inhibiting lipid-peroxidation.3,4 The inhibition of hepatotoxins5 and mutagens6 and the antitumor-promoter action of polyphenols7,8 are also correlated with their antioxidant activity. Most of these actions have been shown using comparatively low-molecular-weight tannins, including epigallocatechin gallate (EGCG). On the other hand, hydrolyzable tannin monomers, oligomers, and galloylated condensed tannins inhibit the replication of herpes simplex virus9 and human immunodeficiency virus10,11 by blocking virus adsorption to the target cells and inhibition of reverse transcriptase activity of the virus. It is also known that many plants containing tannins are effective against cancer and tumors.12,15


Anticancer Activity Condensed Tannin Rosmarinic Acid Hydrolyzable Tannin Peritoneal Exudate Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hatano T.; Edamatsu R.; Hiramatsu M.; Mori A.; Fujita Y.; Yasuhara T.; Yoshida T.; Okuda T. Effects of tannins and related polyphenols on Superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37:2016 (1989).CrossRefGoogle Scholar
  2. 2.
    Okuda, T.; Yoshida, T.; Hatano, T. Antioxidant effects of tannins and related polyphenols. In: ACS Symposium Series No. 507. American Chemical Society, Washington, DC, p. 87 (1992).Google Scholar
  3. 3.
    Kimura Y.; Okuda H.; Okuda T.; Yoshida T.; Hatano T.; Arichi S. Studies on the activities of tannins and related compounds of medicinal plants and drugs. II. Effects of various tannins and related compounds on adrenaline-induced lipolysis in fat cells. Chem. Pharm. Bull. 31:2497 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    Hong, C.-Y.; Wang, C.-P.; Huang, S.-S.; Hsu, F.-L. The inhibitory effect of tannins of lipid peroxidation of rat heart mitochondria. J. Pharm. Pharmacol. 47:138 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    Hikino H.; Kiso Y.; Hatano T.; Yoshida T.; Okuda T. Antihepatoxic actions of tannins. J. Ethnopharmacol. 14:19 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    Okuda T.; Mori K.; Hayatsu H. Inhibitory effect of tannins on direct-acting mutagens. Chem. Pharm. Bull. 32:3755 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshizawa S.; Horiuchi T.; Fujiki H.; Yoshida T.; Okuda T. Antitumor promoting activity of (−)epigallocatechin gallate, the main constituent of ‘tannin’ in green tea. Phytotherapy Res. 1:44 (1987).CrossRefGoogle Scholar
  8. 8.
    Nishida, H.; Omori, M.; Fukutomi, Y.; Ninomiya, M.; Nishiwaki, S.; Suganuma, M.; Moriwaki, H.; Muto, Y Inhibitory effects of (−)-epigallocatechin gallate on spontaneous hepatoma in C3H/HeNCrj mice and human hepatoma-derived PLC/PRF/5 cells. Jpn. J. Cancer Res. 85:221 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Fukuchi K.; Sakagami H.; Okuda T.; Hatano T.; Tanuma S.; Kitajima K.; Inoue Y.; Inoue S.; Ichikawa S.; Nonoyama M.; Konno K. Inhibition of herpes simplex virus infection by tannins and related compounds. Antiviral Res. 11:285 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    Asanaka, M.; Kurimura, T.; Koshiura, R.; Okuda, T.; Mori, M.; Yokoi, H. Tannins as candidate for anti-HIV drug. 4th International Conference on Immunopharmacology. Osaka, p. 35 (abstr.) (1988).Google Scholar
  11. 11.
    Nakashima H.; Murakami T.; Yamamoto N.; Sakagami H.; Tanuma S.; Hatano T.; Yoshida T.; Okuda T. Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antiviral Res. 18:91 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    Akamatsu, K. Shintei wakanyaku. Ishiyakushuppan, Tokyo (1970).Google Scholar
  13. 13.
    Kimura, K. Shinchukotei kokuyaku-honzokomoku. Shunyodo-Shoten, Tokyo (1974).Google Scholar
  14. 14.
    Chiang, S. New medical college dictionary of Chinese crude drugs. Shanghai Scientific Technologic Publisher, Shanghai (1997).Google Scholar
  15. 15.
    Kondo, K. Cancer therapy in China today. Shizensha, Tokyo (1997).Google Scholar
  16. 16.
    Koshiura R.; Miyamoto K.; Ikeya Y.; Taguchi H. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn. J. Pharmacol. 38:9 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    Miyamoto K.; Koshiura R.; Ikeya Y.; Taguchi H. Isolation of agrimoniin, an antitumor constituent, from the roots of Agrimonia pilosa Ledeb. Chem. Pharm. Bull. 33:3977 (1985).CrossRefGoogle Scholar
  18. 18.
    Miyamoto K.; Kishi N.; Koshiura R. Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb., on transplantable rodent tumors. Jpn. J. Pharmacol. 43:187 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    Miyamoto K.; Kishi N.; Koshiura R.; Yoshida T.; Hatano T.; Okuda T. Relationship between the structures and antitumor activities of tannins. Chem. Pharm. Bull. 35:814 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    Miyamoto K.; Kishi N.; Murayama T.; Furukawa T.; Koshiura R. Induction of cytotoxicity of peritoneal exudate cells by agrimoniin, an immunomodulatory tannin of Agrimonia pilosa Ledeb. Cancer Immunol. Immunother. 27:59 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    Murayama T.; Kishi N.; Koshiura R.; Takagi K.; Furukawa T.; Miyamoto K. Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb., induces interleukin-1._Anticancer Res. 12:1417 (1992).Google Scholar
  22. 22.
    Miyamoto K.; Nomura M.; Murayama T.; Furukawa T.; Hatano T.; Yoshida T.; Koshiura R.; Okuda T. Antitumor activities of ellagitannins against sarcoma-180 in mice. Biol. Pharm. Bull. 16:379 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    Miyamoto K.; Murayama T.; Nomura M.; Hatano T.; Yoshida T.; Furukawa T.; Koshiura R.; Okuda T. Antitumor activity and interleukin-1 induction by tannins. Anticancer Res. 13:37 (1993).PubMedGoogle Scholar
  24. 24.
    Okamoto, H.; Shoin, S.; Koshimura, S. Streptolysin S-forming and antitumor activities of group A streptococci.In: Jeljaszewicz, J.; Wadstrom, T. (eds.). Bacterial toxins and cell membrane. Academic Press, New York, p.259 (1978).Google Scholar
  25. 25.
    Kai S.; Tanaka J.; Nomoto K.; Torisu M. Studies on the immunopotentiating effects of a streptococcal preparation, OK-432._I. Enhancement of T cell-mediated immune response of mice. Clin. Exp. Immunol. 37:98 (1979).PubMedGoogle Scholar
  26. 26.
    Murayama, T.; Natsuume-Sakai, S.; Ryoyama, K.; Koshimura, S. Studies on the properties of a streptococcal preparation, OK-432 (NSC-B116209), as an immunopotentiator. II. Mechanism of macrophage activation by OK-432. Cancer Immunol. Immunother. 12:141 (1982).CrossRefGoogle Scholar
  27. 27.
    Okuda T.; Yoshida T.; Kuwahara M.; Memon M.U.; Shingu T. Tannins of Rosaceous medicinal plants. I. Structures of potentillin, agrimonic acids A and B, and agrimoniin, a dimeric ellagitannin. Chem. Pharm. Bull. 32:2165 (1984).CrossRefGoogle Scholar
  28. 28.
    Hatano, T.; Yasuhara, T.; Matsuda, M.; Yazaki, K.; Yoshida, T.; Okuda, T. Oenothein B, a dimeric hydrolyzable tannin with macrocyclic structure, and accompanying tannins from Oenothera erythrosepala. J. Chem. Soc., Perkin Trans. 1.:2735 (1990).Google Scholar
  29. 29.
    Yoshida T.; Chou T.; Nitta A.; Miyamoto K.; Koshiura R.; Okuda T. Woodfordin C, a macro-ring hydrolyzable tannin dimer with antitumor activity, and accompanying dimers from Woodfordia fruticosa flowers. Chem. Pharm. Bull. 38:1211 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshida T.; Chou T.; Matsuda M.; Yasuhara T.; Yazaki K.; Hatano T.; Okuda T. Anti-tumor hydrolyzable tannins of macro-ring structure with anti-tumor activity. Chem. Pharm. Bull. 39:1157 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    Miyamoto K.; Nomura M.; Sasakura M.; Matsui E.; Koshiura R.; Murayama T.; Furukawa T.; Hatano T.; Yoshida T.; Okuda T. Antitumor activity of oenothein B, a unique macrocyclic ellagitannin. Jpn. J. Cancer Res. 84:99 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    Haslam, E. Plant polyphenols—vegetable tannins revisited. Cambridge University Press, Cambridge (1989).Google Scholar
  33. 33.
    Okuda T.; Mori K.; Shiota M.; Ida K. Effects of the interaction of tannins with coexisting substances. II. Reduction of heavy metal ions and solubilization of precipitate. Yakugaku Zasshi 102:734 (1982).Google Scholar
  34. 34.
    Okuda T.; Mori K.; Shiota M. Effects of the interaction of tannins with co-existing substances. III. Formation and solubilization of precipitates. Yakugaku Zasshi 102:854 (1982).PubMedGoogle Scholar
  35. 35.
    Durum S.K.; Schmidt J.A.; Oppenheim J.J. IL-1, an immunological perspective. Annu. Rev. Immunol. 3:263 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    Dinarello, C.A. Biology of interleukin 1. Fed. Am. Soc. Exp. Biol. J. 2:108 (1988).Google Scholar
  37. 37.
    Herman, J.; Dinarello, C.A.; Kew, M.C.; Rabson, A.R. The role of interleukin 1 (IL-1) in tumor-NK cell interactions: Correction of defective NK cell activity in cancer patients by treating target cells with IL-1. J. Immunol. 135:2882 (1985).PubMedGoogle Scholar
  38. 38.
    Dempsey R.A.; Dinarello C.A.; Mier J.W.; Rosenwasser L.J.; Allegretta M.; Brown T.E.; Parkinson D.R. The differential effects of human leukocytic pyrogen/lymphocyte-activating factor, T cell growth factor, and interferon on human natural killer activity. J. Immunol. 129:2504 (1982).PubMedGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 1999

Authors and Affiliations

  • Ken-ichi Miyamoto
    • 1
  • Tsugiya Murayama
    • 2
  • Tsutomu Hatano
    • 3
  • Takashi Yoshida
    • 3
  • Takuo Okuda
    • 3
  1. 1.Department of Hospital Pharmacy School of MedicineKanazawa UniversityKanazawa 920Japan
  2. 2.Department of MicrobiologyKanazawa Medical UniversityIshikawaJapan
  3. 3.Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan

Personalised recommendations