Glycosylation, Esterification, and Polymerization of Flavonoids and Hydroxycinnamates: Effects on Antioxidant Properties

  • Gary Williamson
  • Geoff W. Plumb
  • Maria T. Garcia-Conesa
Part of the Basic Life Sciences book series (BLSC, volume 66)


Dietary flavonoids and hydroxycinnamates are effective antioxidants that may affect health and are also important for food preservation. Of the flavonoids, quercetin is a common representative and is found in many plant foods, especially onions, apples, tea, and broccoli. Quercetin is glycosylated in most plants, and the position and the nature of substitution of the sugar are species specific. Catechins are a well-studied group of flavonoids found at high levels in tea. Hydroxycinnamates are also found at exceptionally high levels in many foods including coffee and cereal brans and include ferulic, sinapic, p-coumaric, and caffeic acids. These compounds are commonly ester-linked to sugars or organic acids. This chapter reviews the action of flavonoids and hydroxycinnamates in two antioxidant assays: direct scavenging of the ABTS radical in the aqueous phase1 and inhibition of iron/ascorbate-induced lipid peroxidation of phosphatidylcholine liposomes.2


Antioxidant Activity Ferulic Acid Caffeic Acid Trolox Equivalent Antioxidant Capac Oxygen Radical Absorbance Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller N.; Rice-Evans C. Spectrophotometric determination of antioxidant activity. Redox. Rep. 2:161–171 (1996).Google Scholar
  2. 2.
    Williamson G.; Plumb G.W.; Uda Y.; Price K.R.; Rhodes M.J.C. Dietary quercetin glycosides: antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis 17:2385–2387 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake on potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer. 20:29 (1993).CrossRefGoogle Scholar
  4. 4.
    Hertog, M.G.L.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic, B.S.; Toshima, H.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B. Flavonoid intake and longterm risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 155:381–386 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    Hanasaki Y.; Ogawa S.; Fukui S. The correlation between active oxygen scavenging and antioxidant effects of flavonoids. Free Rad. Biol. Med. 16:845–850 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    Laughton M.J.; Halliwell B.; Evans P.J.; Hoult J.R. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem. Pharmacol. 38:2859–2865 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, P.-E.; Zheng, R.-L. Inhibitions of autoxidation of linoleic acid by flavonoids in micelles. Chem. Phys. Lipids 63:37–40 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    Saija A.; Scalese M.; Lanza M.; Marzullo D.; Bonina F.; Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Rad. Biol. Med. 19:481–486 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    Chen Z.Y.; Chan P.T.; Ho K.Y.; Fung K.P.; Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids 79:157–163 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    Salah N.; Miller N.J.; Paganga G.; Tijburg L.; Bolwell G.P.; Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322:339–346 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    Vinson J.A.; Dabbagh Y.A.; Serry M.M.; Jang J.H. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agr. Food Chem. 43:2800–2802 (1995).CrossRefGoogle Scholar
  12. 12.
    Foti M.; Piattelli M.; Baratta M.T.; Ruberto G. Flavonoids, coumarins and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agric. Food Chem. 44:497–501 (1996).CrossRefGoogle Scholar
  13. 13.
    Aruoma, O.I. Antioxidant methodology: in vivo and in vitro concepts. AOCS Press, Champaign, IL, (1997).Google Scholar
  14. 14.
    Cao G.; Sofic E.; Prior R.L. Antioxidant and pro-oxidant behaviour of flavonoids: structure-activity relationships. Free Radical Biol. Med. 22:749–760 (1997).CrossRefGoogle Scholar
  15. 15.
    Pannala A.; Rice-Evans C.A.; Halliwell B.; Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem. Biophys. Res. Commun. 232:164–168 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    Hertog M.G.L.; Sweetman P.M.; Fehily A.M.; Elwood P.C.; Kromhout D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly study. Am. J. Clin. Nutr. 65:1489–1494 (1997).PubMedGoogle Scholar
  17. 17.
    Dorant E.; Van den Brandt P.A.; Goldbohm R.A.; Sturmans F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology 110:12–20 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    Knekt P.; Jarvinen R.; Seppanen R.; Heliovaara M.; Teppo L.; Pukkala E.; Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 146:223–230 (1997).PubMedGoogle Scholar
  19. 19.
    Rimm E.B.; Katan M.B.; Ascherio A.; Stampfer M.J.; Walter M.D.; Willett M.D. Relation between intake of flavonoids and risk of coronary heart disease in male health professionals. Ann. Intern. Med. 125:384–389 (1996).PubMedGoogle Scholar
  20. 20.
    Mitscher L.A.; Jung M.; Shankel D.; Dou J.H.; Steele L.; Pillai S.P. Chemoprotection: A review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med. Res. Rev. 17:327–365 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    Formica J.V.; Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33:1061–1080 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    Das A.; Wang J.H.; Lien E.J. Carcinogenicity, mutagenicity and cancer preventing activities of flavonoids: a structure-system-activity relationship (SSAR) analysis. Progress Drug Res. 42:166 (1994).Google Scholar
  23. 23.
    Zhu M.; Phillipson J.D.; Greengrass P.M.; Bowery N.E.; Cai Y. Plant polyphenols: Biologically active compounds or non-selective binders to protein? Phytochemistry 44:441–447 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    Brown J.; Khodr H.; Hider R.C.; Rice-Evans C. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330:1173–1178 (1998).PubMedGoogle Scholar
  25. 25.
    Yokozawa T.; Dong E.; Liu Z.W.; Shimizu M. Antioxidative activity of flavones and flavonols in vitro. Phytother. Res. 11:446–449 (1997).CrossRefGoogle Scholar
  26. 26.
    Cook N.C.; Samman S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7:66–76 (1996).CrossRefGoogle Scholar
  27. 27.
    Rice-Evans C.A.; Miller N.J.; Bolwell P.G.; Bramley P.M.; Pridham J.B. The relativeantioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res. 22:375–383 (1995).CrossRefGoogle Scholar
  28. 28.
    Rice-Evans C.A.; Miller N.J.; Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20:933–956 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    Musonda C.A.; Helsby N.; Chipman J.K. Effects of quercetin on drug metabolizing enzymes and oxidation of 2′,7-dichlorofluorescin in HepG2 cells. Hum. Exp. Toxicol. 16:700–708 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    Agullo G.; Gamet-Payrastre L.; Manenti S.; Viala C.; Remesy C.; Chap H.; Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol. 53:1649–1657 (1997).PubMedCrossRefGoogle Scholar
  31. 31.
    Cos P.; Ying L.; Calomme M.; Hu J.P.; Cimanga K.; Van Poel, B.; Pieters L.; Vlietinck A.J.; Van den Berghe D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and Superoxide scavengers. J Nat. Prod. 61:71–76 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    Walle T.; Eaton E.A.; Walle U.K. Quercetin, a potent and specific inhibitor of the human p-form phenolsulfotransferase. Biochem. Pharmacol. 50:731–734 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    Sato M.; Miyazaki T.; Kambe F.; Maeda K.; Seo H. Quercetin, a bioflavonoid, inhibits the induction of interleukin 8 and monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha in cultured human synovial cells. J. Rheumatol. 24:1680–1684 (1997).PubMedGoogle Scholar
  34. 34.
    Dong Z.G.; Ma W.Y.; Huang C.S.; Yang C.S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res. 57:4414–4419 (1997).PubMedGoogle Scholar
  35. 35.
    Hayek T.; Fuhrman B.; Vaya J.; Rosenblat M.; Belinky P.; Coleman R.; Elis A.; Aviram M. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol. 17:2744–2752 (1997).CrossRefGoogle Scholar
  36. 36.
    Manach C.; Morand C.; Crespy V.; Demigne C.; Texier O.; Regerat F.; Remesy C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS lett. 426:331–336 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    Miller N.J.; Diplock A.T.; Rice-Evans C.A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice oil storage. J. Agr. Food Chem. 43:1794–1801 (1995).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 1999

Authors and Affiliations

  • Gary Williamson
    • 1
  • Geoff W. Plumb
    • 1
  • Maria T. Garcia-Conesa
    • 1
  1. 1.Biochemistry DepartmentInstitute of Food ResearchColney, NorwichEngland

Personalised recommendations