Advertisement

Designer Tannins: Using Genetic Engineering to Modify Levels and Structures of Condensed Tannins in Lotus corniculatus

  • Mark P. Robbins
  • Adrian D. Bavage
  • Phillip Morris
Chapter
Part of the Basic Life Sciences book series (BLSC, volume 66)

Abstract

In terms of the genetic improvement of forage legumes, a number of targets have been identified.1 However, it is interesting to note that when one discusses the modification of chemical composition of these species, condensed tannins have been identified as being of critical importance by a number of independent research groups.

Keywords

Hairy Root Root Culture Condensed Tannin White Clover Tannin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKersie, B.D.; Brown, D.C.W. Biotechnology and the improvement of forage legumes. CAB International, Oxford (1997).Google Scholar
  2. 2.
    Barry T.N.; Duncan S.J. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 1._Voluntary intake. Br. J. Nut. 51:485 (1984).CrossRefGoogle Scholar
  3. 3.
    Lees, G.L. Condensed tannins in some forage legumes: their role in the prevention of ruminant pasture bloat. In: Hemingway, R.W.; Laks, P.E. (eds.). Plant polyphenols—synthesis, properties, significance. Plenum Press, New York p. 915 (1992).Google Scholar
  4. 4.
    Reid C.S.W. Bloat in New Zealand cattle. Bovine Practitioner 1:24 (1976).Google Scholar
  5. 5.
    Hardy, T. Far from the madding crowd. McMillan, London (1874).Google Scholar
  6. 6.
    Tanner G.J.; Moate P.J.; Davis L.H.; Laby R.H.; Yuguang L.; Larkin P.A. Proanthocyanidins (condensed tannin) destabilise plant protein foams in a dose dependent manner. Aust. J. Agric. Res. 46:1101 (1995).CrossRefGoogle Scholar
  7. 7.
    Reed J.D. Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 34:82 (1994).Google Scholar
  8. 8.
    Carter, E.B.; Theodorou, M.K.; Morris, P. Responses of Lotus corniculatus to environmental change. 2._Effect of elevated CO2, temperature and drought on tissue digestion in relation to tannin and carbohydrate accumulation. J. Sci. Food Agric. (in press).Google Scholar
  9. 9.
    Robbins, M.P.; Carron, T.R.; Morris, P. Transgenic Lotus corniculatus: a model system for modification and genetic manipulation of condensed tannin biosynthesis. In: Hemingway, R.W.; Laks, tP.E. (eds.). Plant polyphenols—synthesis, properties, significance. Plenum Press, New York, p. 111 (1992).Google Scholar
  10. 10.
    Webb K.J.; Jones S.; Robbins M.P.; Minchin F.R. Characterisation of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci. 70:243 (1990).CrossRefGoogle Scholar
  11. 11.
    Lacombe E.; Hawkins S.; Van Doorsselaere, J.; Piquemal J.; Goffner D.; Poeydomenge O.; Boudet A.M.; Grima-Pettenati J. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11:429 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    Joseph R.; Tanner G.; Larkin P. Proanthocyanidin synthesis in the forage legume Onobrychis viciifolia. A study of chalcone synthase, dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves, Aust. J. Plant Physiol. 25:271 (1998).CrossRefGoogle Scholar
  13. 13.
    Meldgaard M. Expression of chalcone synthase, dihydroflavonol reductase and flavanone 3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695 (1992).CrossRefGoogle Scholar
  14. 14.
    Bavage A.D.; Robbins M.P. Dihydroflavonol reductase, a Lotus corniculatus L. tannin biosynthesis gene: isolation of a partial gene clone by PCR. Lotus Newsletter 25:37 (1994).Google Scholar
  15. 15.
    Moyano E.; Portero-Robles I.; Medina-Escobar N.; Valpuesta V.; Munoz-Blanco J.; Caballero J.L. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol. 117:711 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    Colliver S.P.; Morris P.; Robbins M.P. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Mol. Biol. 35:509 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    Beffa, R.S.; Neuhaus J.-M.; Meins F. Physiological compensation in antisense transformants: Specific induction of an “ersatz” glucan endo-1,3-glucosidase in plants infected with necrotizing viruses. Proc. Natl. Acad. Sci. USA 90:8792 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    Todd J.J.; Vodkin L.O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    Carron T.R.; Robbins M.P.; Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. I. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy root” cultures. Theor. Appl. Genet. 87:1006 (1994).CrossRefGoogle Scholar
  20. 20.
    Robbins M.P.; Bavage A.D.; Strudwicke C.; Morris P. Genetic manipulation of condensed tannins in higher plants. II. Analysis of birdsfoot trefoil plants harbouring antisense dihydroflavonol reductase constructs. Plant Physiol. 116:1133 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    Bavage A.D.; Davies I.G.; Robbins M.P.; Morris P. Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird’s foot trefoil). Plant Mol. Biol. 35:443 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    Jende-Strid B. Gene-enzyme relations in the pathway of flavonoid biosynthesis in barley. Theor. Appl. Genet. 81:668 (1991).CrossRefGoogle Scholar
  23. 23.
    Jende-Strid B. Genetic control of flavonoid biosynthesis in barley. Hereditas 119:187 (1993).CrossRefGoogle Scholar
  24. 24.
    Damiani, F.; Paulocci, F.; Cluster, P.D.; Arcioni, S.; Tanner, G.J.; Joseph, R.J.; Yi, Y.G.; Demajnik, J.; Larkin, P.J. Tissue-specific up-and down-regulation of tannin synthesis in transgenic Lotus corniculatus plants. In: Vercauteren, J.; Cheze, C.; Dumon, M.C.; Weber, J.F. (eds.) Polyphenols communications 96. Groupe Polyphenols, Bordeaux (France). 219 (1996).Google Scholar
  25. 25.
    Robbins, M.P.; Bavage, A.D.; Morris, P. Options for the genetic manipulation of astringent and antinutritional metabolites in fruit and vegetables. In: Tomas-Barberan, F.A.; Robins, R.J. (eds.). Phytochemistry of fruit and vegetables. Clarendon Press, Oxford, p. 251 (1997).Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 1999

Authors and Affiliations

  • Mark P. Robbins
    • 1
  • Adrian D. Bavage
    • 1
  • Phillip Morris
    • 1
  1. 1.Institute of Grassland and Environmental ResearchAberystwyth Research CenterAberystwyth, CeredigionUK

Personalised recommendations